找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshaping Convex Polyhedra; Joseph O‘Rourke,Costin V?lcu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licens

[復(fù)制鏈接]
樓主: FAULT
31#
發(fā)表于 2025-3-27 01:02:32 | 只看該作者
32#
發(fā)表于 2025-3-27 04:13:55 | 只看該作者
978-3-031-47513-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
33#
發(fā)表于 2025-3-27 08:12:18 | 只看該作者
34#
發(fā)表于 2025-3-27 11:48:49 | 只看該作者
Domes and Pyramids tailoring. A key step (Lemma .) repeatedly slices off shapes we call g-domes. Each g-dome slice can itself be achieved by slicing off pyramids, i.e., by suitable vertex truncations. Lemma . will show that slicing off a pyramid can be achieved by tailoring, and thus leading to Theorem ..
35#
發(fā)表于 2025-3-27 13:49:23 | 只看該作者
Pyramid Seal Graph skipped and visited later. The chapter explores a topic that emerged from our approach of tailoring via sculpting: roughly, the distribution of “traces” or “scars” left on the resulting polyhedron . by the digon-tailoring process. We called them “seals” in the previous chapter. The . is the graph on . formed by all seals.
36#
發(fā)表于 2025-3-27 18:51:06 | 只看該作者
Tailoring via Flattenings slightly weaker than tailoring via sculpting, either with digons (Theorem .) or with crests (Theorem .), weaker in the sense that the resulting scaled copy of . could be arbitrarily small. Nevertheless, the proof and algorithm have the advantage of operating entirely intrinsically: the 3D structure of . and . is never invoked.
37#
發(fā)表于 2025-3-28 00:32:01 | 只看該作者
38#
發(fā)表于 2025-3-28 04:15:15 | 只看該作者
Vertices on Quasigeodesicsx polyhedron . has a quasigeodesic . containing at most one vertex, then the vertex-merging described in that theorem leads to an unfolding of . to a cylinder . and then to a non-overlapping unfolding, an anycut-net for ..
39#
發(fā)表于 2025-3-28 09:04:03 | 只看該作者
40#
發(fā)表于 2025-3-28 11:45:17 | 只看該作者
alls durchschnittlich minderbegabt sich zeigten. Und zwar betrug die Abweichung im Durchschnitt etwa ein Drittel von der der Eltern. Zwischen den. Durchschnittsnoten der Gro?eltern und Enkel zeigte sich eine übereinstimmung von nur wenig geringerer Gr??e.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛纳斯县| 涿州市| 商水县| 田东县| 湟中县| 棋牌| 崇州市| 华容县| 商河县| 泸水县| 曲靖市| 万州区| 钟祥市| 卢湾区| 思茅市| 湘潭县| 容城县| 云霄县| 彰化县| 嘉黎县| 阳曲县| 汝阳县| 和平区| 西昌市| 霍林郭勒市| 鹤岗市| 阳江市| 类乌齐县| 祁东县| 金川县| 新营市| 东乌| 中阳县| 蒙山县| 石棉县| 武胜县| 股票| 调兵山市| 泰安市| 陕西省| 天等县|