找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshaping Convex Polyhedra; Joseph O‘Rourke,Costin V?lcu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licens

[復(fù)制鏈接]
查看: 17678|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:33:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Reshaping Convex Polyhedra
編輯Joseph O‘Rourke,Costin V?lcu
視頻videohttp://file.papertrans.cn/829/828166/828166.mp4
概述Beautifully illustrated, the more elementary concepts of geometry are accessible to non-experts.Remarkable interplay of concepts come to life on a wide range of topics on polyhedra.Theory of convex po
圖書封面Titlebook: Reshaping Convex Polyhedra;  Joseph O‘Rourke,Costin V?lcu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licens
描述.The focus of this monograph is converting—reshaping—one 3D convex polyhedron to another via an operation the authors call “tailoring.” A convex polyhedron is a gem-like shape composed of flat facets, the focus of study since Plato and Euclid. The tailoring operation snips off a corner (a “vertex”) of a polyhedron and sutures closed the hole. This is akin to Johannes Kepler’s “vertex truncation,” but differs in that the hole left by a truncated vertex is filled with new surface, whereas tailoring zips the hole closed. A powerful “gluing” theorem of A.D. Alexandrov from 1950 guarantees that, after closing the hole, the result is a new convex polyhedron. Given two convex polyhedra P, and Q inside P, repeated tailoringallows P to be reshaped to Q. Rescaling any Q to fit inside P, the result is universal: any P can be reshaped to any Q. This is one of the main theorems in Part I, with unexpected theoretical consequences..Part II carries out a systematic study of “vertex-merging,” a technique that can be viewed as a type of inverse operation to tailoring. Here the start is P which is gradually enlarged as much as possible, by inserting new surface along slits. In a sense, repeated verte
出版日期Book 2024
關(guān)鍵詞Alexandrov Gluing Theorem; tailoring operation; convex polyhedra; vertex-merging; digon-tailoring
版次1
doihttps://doi.org/10.1007/978-3-031-47511-5
isbn_softcover978-3-031-47513-9
isbn_ebook978-3-031-47511-5
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Reshaping Convex Polyhedra影響因子(影響力)




書目名稱Reshaping Convex Polyhedra影響因子(影響力)學(xué)科排名




書目名稱Reshaping Convex Polyhedra網(wǎng)絡(luò)公開度




書目名稱Reshaping Convex Polyhedra網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Reshaping Convex Polyhedra被引頻次




書目名稱Reshaping Convex Polyhedra被引頻次學(xué)科排名




書目名稱Reshaping Convex Polyhedra年度引用




書目名稱Reshaping Convex Polyhedra年度引用學(xué)科排名




書目名稱Reshaping Convex Polyhedra讀者反饋




書目名稱Reshaping Convex Polyhedra讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:03:51 | 只看該作者
g mit der daraus entwickelten lebhaften Diskussion vielfach die Meinung festgesetzt, als ob die moderne Psychiatrie — man m?chte fast sagen: Schuld an der Entdeckung eines seelischen Zusammenhangs, n?mlich des teilweisen Zusammenhangs zwischen Genialit?t und Geistesst?rung w?re, der viele Menschen s
板凳
發(fā)表于 2025-3-22 04:12:50 | 只看該作者
地板
發(fā)表于 2025-3-22 08:24:08 | 只看該作者
5#
發(fā)表于 2025-3-22 10:26:31 | 只看該作者
6#
發(fā)表于 2025-3-22 14:45:47 | 只看該作者
Joseph O’Rourke,Costin V?lcu mit der daraus entwickelten lebhaften Diskussion vielfach die Meinung festgesetzt, als ob die moderne Psychiatrie — man m?chte fast sagen: Schuld an der Entdeckung eines seelischen Zusammenhangs, n?mlich des teilweisen Zusammenhangs zwischen Genialit?t und Geistesst?rung w?re, der viele Menschen so
7#
發(fā)表于 2025-3-22 17:06:03 | 只看該作者
8#
發(fā)表于 2025-3-22 21:28:36 | 只看該作者
9#
發(fā)表于 2025-3-23 04:37:39 | 只看該作者
Joseph O’Rourke,Costin V?lcu einen einzigartigen Wert für die Menschheit überhaupt beizulegen. Solche Forscher (und es gelingt nur ganz wenigen, sich davon innerlich frei zu halten) kommen mir vor wie jener hochgebildete chinesische Herr, der sich darüber wunderte, da? die europ?ischen Frauen fast alle h??lich w?ren, w?hrend d
10#
發(fā)表于 2025-3-23 06:47:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯昌县| 鹤峰县| 霍州市| 宜良县| 巴南区| 乃东县| 沂源县| 筠连县| 尼玛县| 焦作市| 莒南县| 项城市| 铁岭市| 石景山区| 汶川县| 通州区| 获嘉县| 托克托县| 靖江市| 会昌县| 冷水江市| 通许县| 江川县| 溧水县| 广元市| 江山市| 吴桥县| 柳江县| 杭州市| 丰都县| 辽阳市| 江安县| 垣曲县| 耿马| 连平县| 百色市| 西华县| 南和县| 吉木乃县| 会同县| 金湖县|