找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshaping Convex Polyhedra; Joseph O‘Rourke,Costin V?lcu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licens

[復制鏈接]
樓主: FAULT
21#
發(fā)表于 2025-3-25 05:42:56 | 只看該作者
Introduction to Part IWe begin with some background on convex polyhedra, setting the context for our results. The discussion in this section will be mostly informal and elementary, with formal definitions and statements deferred to later chapters.
22#
發(fā)表于 2025-3-25 10:16:45 | 只看該作者
Tailoring via SculptingIn this chapter we complete the proof that one slice of . by plane . can be tailored to the face of . lying in ., following the sequence.The previous chapter established the g-domes → pyramids reduction. Here we first prove the relatively straightforward slice → g-domes process and then concentrate on the more complex pyramid → tailoring step.
23#
發(fā)表于 2025-3-25 15:27:33 | 只看該作者
CrestsIn this chapter we revisit the suggestion made at the end of Chap. . that the digons to reduce one pyramid to its base could be cut out all at once, thus yielding an additional tailoring method.
24#
發(fā)表于 2025-3-25 18:15:46 | 只看該作者
25#
發(fā)表于 2025-3-25 23:54:32 | 只看該作者
26#
發(fā)表于 2025-3-26 03:46:34 | 只看該作者
Vertex-Merging Reductions and Slit GraphsIn this chapter we initiate the systematic study of repeated vertex-mergings, already used in Chap. .. We introduce vertex-merging reductions and their associated slit graphs and derive their basic properties for later use.
27#
發(fā)表于 2025-3-26 05:46:50 | 只看該作者
Planar Spiral Slit TreeThe previous chapter showed that if the slit graph . of a vm-reduction is a tree, then we can unfold . to the plane, and possibly to a non-overlapping net.
28#
發(fā)表于 2025-3-26 10:48:07 | 只看該作者
29#
發(fā)表于 2025-3-26 12:39:32 | 只看該作者
30#
發(fā)表于 2025-3-26 18:31:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沙河市| 罗定市| 沈丘县| 宜君县| 灵石县| 搜索| 德惠市| 红安县| 铁岭市| 苏尼特左旗| 新化县| 五大连池市| 湘潭县| 家居| 慈利县| 株洲县| 临潭县| 乐东| 湟中县| 年辖:市辖区| 祁阳县| 武川县| 扎鲁特旗| 鄂尔多斯市| 平舆县| 宝清县| 博兴县| 凤庆县| 武平县| 鄂托克前旗| 龙海市| 广元市| 仁化县| 阳高县| 永顺县| 东方市| 威海市| 易门县| 塔城市| 阆中市| 延川县|