找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of Hecke Algebras at Roots of Unity; Meinolf Geck,Nicolas Jacon Book 2011 Springer-Verlag London Limited 2011 Canonical ba

[復(fù)制鏈接]
樓主: patch-test
11#
發(fā)表于 2025-3-23 11:17:33 | 只看該作者
Specialisations and Decomposition Maps, canonical basic sets for Iwahori-Hecke algebras of classical types. A model case is given by the symmetric group. In another direction, we present a factorisation result for decomposition matrices and present a general formulation of James’ conjecture.
12#
發(fā)表于 2025-3-23 15:27:34 | 只看該作者
Hecke Algebras and Finite Groups of Lie Type,rbaki, Iwahori, Tits, which are concerned with the characteristic 0 situation. We then discuss a number of examples and open problems. This includes a conjectural classification of all the irreducible representations of . in the “non-defining characteristic case”.
13#
發(fā)表于 2025-3-23 20:16:47 | 只看該作者
14#
發(fā)表于 2025-3-23 22:18:09 | 只看該作者
15#
發(fā)表于 2025-3-24 05:23:01 | 只看該作者
,Kazhdan–Lusztig Cells and Cellular Bases,This gives rise to a general theory of “Specht modules” in which Lusztig’s .-function plays, again, a central role. The chapter ends with an elementary treatment of the case where . is the symmetric group.
16#
發(fā)表于 2025-3-24 09:48:15 | 只看該作者
1572-5553 ield.Uses a number of concrete examples to clearly explain tThe modular representation theory of Iwahori-Hecke algebras and this theory‘s connection to groups of Lie type is an area of rapidly expanding interest; it is one that has also seen a number of breakthroughs in recent years. In classifying
17#
發(fā)表于 2025-3-24 12:44:23 | 只看該作者
18#
發(fā)表于 2025-3-24 18:02:17 | 只看該作者
19#
發(fā)表于 2025-3-24 19:58:48 | 只看該作者
Specialisations and Decomposition Maps,unction, we define the key concept of “canonical basic set”. This concept gives a theoritical way to classify the simple modules of Iwahori-Hecke algebras at roots of unity. It is in particular independent of the notion of cellular structure. We develop a general strategy to determine explicitly the
20#
發(fā)表于 2025-3-25 01:54:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖西县| 德令哈市| 威信县| 监利县| 永丰县| 宁都县| 德令哈市| 黄浦区| 上饶县| 山西省| 武汉市| 准格尔旗| 沅江市| 和田县| 即墨市| 滕州市| 桂阳县| 东乡县| 建水县| 涿鹿县| 东至县| 株洲市| 福鼎市| 上饶县| SHOW| 云林县| 夏河县| 富蕴县| 福贡县| 云南省| 汕尾市| 赣榆县| 泽州县| 峨边| 休宁县| 崇文区| 长泰县| 奇台县| 林芝县| 拜城县| 涞水县|