找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of Hecke Algebras at Roots of Unity; Meinolf Geck,Nicolas Jacon Book 2011 Springer-Verlag London Limited 2011 Canonical ba

[復(fù)制鏈接]
查看: 20502|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:57:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Representations of Hecke Algebras at Roots of Unity
編輯Meinolf Geck,Nicolas Jacon
視頻videohttp://file.papertrans.cn/828/827477/827477.mp4
概述Offers the first systematic and unified treatment of representations of Hecke algebras at roots of unity.Written by leading experts in the field.Uses a number of concrete examples to clearly explain t
叢書名稱Algebra and Applications
圖書封面Titlebook: Representations of Hecke Algebras at Roots of Unity;  Meinolf Geck,Nicolas Jacon Book 2011 Springer-Verlag London Limited 2011 Canonical ba
描述The modular representation theory of Iwahori-Hecke algebras and this theory‘s connection to groups of Lie type is an area of rapidly expanding interest; it is one that has also seen a number of breakthroughs in recent years. In classifying the irreducible representations of Iwahori-Hecke algebras at roots of unity, this book is a particularly valuable addition to current research in this field. Using the framework provided by the Kazhdan-Lusztig theory of cells, the authors develop an analogue of James‘ (1970) "characteristic-free‘‘ approach to the representation theory of Iwahori-Hecke algebras in general.Presenting a systematic and unified treatment of representations of Hecke algebras at roots of unity, this book is unique in its approach and includes new results that have not yet been published in book form. It also serves as background reading to further active areas of current research such as the theory of affine Hecke algebras and Cherednik algebras.The main results of this book are obtained by an interaction of several branches of mathematics, namely the theory of Fock spaces for quantum affine Lie algebras and Ariki‘s theorem, the combinatorics of crystal bases, the theor
出版日期Book 2011
關(guān)鍵詞Canonical bases; Fock spaces; Hecke algebras; Modular representations
版次1
doihttps://doi.org/10.1007/978-0-85729-716-7
isbn_softcover978-1-4471-2657-7
isbn_ebook978-0-85729-716-7Series ISSN 1572-5553 Series E-ISSN 2192-2950
issn_series 1572-5553
copyrightSpringer-Verlag London Limited 2011
The information of publication is updating

書目名稱Representations of Hecke Algebras at Roots of Unity影響因子(影響力)




書目名稱Representations of Hecke Algebras at Roots of Unity影響因子(影響力)學(xué)科排名




書目名稱Representations of Hecke Algebras at Roots of Unity網(wǎng)絡(luò)公開度




書目名稱Representations of Hecke Algebras at Roots of Unity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Representations of Hecke Algebras at Roots of Unity被引頻次




書目名稱Representations of Hecke Algebras at Roots of Unity被引頻次學(xué)科排名




書目名稱Representations of Hecke Algebras at Roots of Unity年度引用




書目名稱Representations of Hecke Algebras at Roots of Unity年度引用學(xué)科排名




書目名稱Representations of Hecke Algebras at Roots of Unity讀者反饋




書目名稱Representations of Hecke Algebras at Roots of Unity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:43:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:34:58 | 只看該作者
地板
發(fā)表于 2025-3-22 06:36:18 | 只看該作者
5#
發(fā)表于 2025-3-22 12:20:25 | 只看該作者
Meinolf Geck,Nicolas JaconOffers the first systematic and unified treatment of representations of Hecke algebras at roots of unity.Written by leading experts in the field.Uses a number of concrete examples to clearly explain t
6#
發(fā)表于 2025-3-22 13:13:34 | 只看該作者
7#
發(fā)表于 2025-3-22 19:13:31 | 只看該作者
Representations of Hecke Algebras at Roots of Unity978-0-85729-716-7Series ISSN 1572-5553 Series E-ISSN 2192-2950
8#
發(fā)表于 2025-3-22 22:19:15 | 只看該作者
9#
發(fā)表于 2025-3-23 01:50:44 | 只看該作者
10#
發(fā)表于 2025-3-23 06:19:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凭祥市| 丽水市| 子长县| 龙里县| 深泽县| 明溪县| 竹溪县| 青冈县| 班玛县| 榆林市| 海宁市| 九江市| 漳平市| 常熟市| 林州市| 偏关县| 新宾| 都兰县| 荥经县| 渑池县| 镇江市| 邓州市| 富源县| 延长县| 栾城县| 茶陵县| 土默特右旗| 北辰区| 南昌市| 邓州市| 普宁市| 盐山县| 青岛市| 吴旗县| 汉沽区| 禄丰县| 股票| 榆社县| 左权县| 察雅县| 达州市|