找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning Algorithms: Analysis and Applications; Boris Belousov,Hany Abdulsamad,Jan Peters Book 2021 The Editor(s) (if applic

[復制鏈接]
樓主: Hayes
41#
發(fā)表于 2025-3-28 16:00:37 | 只看該作者
1860-949X e field.This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is pl
42#
發(fā)表于 2025-3-28 20:19:26 | 只看該作者
43#
發(fā)表于 2025-3-29 01:34:00 | 只看該作者
Fisher Information Approximations in Policy Gradient Methodsffline estimation methods as well as surveys more recent developments such as the expectation approximation technique based on the Kronecker-factored approximate curvature (KFAC) method and extensions thereof. The trade-offs introduced by the approximations in the context of policy gradient methods are discussed.
44#
發(fā)表于 2025-3-29 05:01:44 | 只看該作者
45#
發(fā)表于 2025-3-29 09:29:00 | 只看該作者
Challenges of Model Predictive Control in a Black Box Environmentg prominently discussed in the corressponding papers are crucial to the algorithm. In this paper, we review recent approaches revolving around the use of MPC for model-based RL in order to connect them to the conceptual problems that need to be tackled when using MPC in a learning scenario.
46#
發(fā)表于 2025-3-29 14:52:51 | 只看該作者
47#
發(fā)表于 2025-3-29 17:36:19 | 只看該作者
Model-Free Deep Reinforcement Learning—Algorithms and Applicationslyzed and associated with new improvements in order to overcome previous problems. Further, the survey shows application scenarios for difficult domains, including the game of Go, Starcraft II, Dota 2, and the Rubik’s Cube.
48#
發(fā)表于 2025-3-29 22:09:23 | 只看該作者
Actor vs Critic: Learning the Policy or Learning the Valuein circumstances. In this paper, we will compare these methods and identify their advantages and disadvantages. Moreover, we will illustrate the insights obtained using the examples of REINFORCE, DQN and DDPG for a better understanding. Finally, we will give brief suggestions about which approach to use under certain conditions.
49#
發(fā)表于 2025-3-30 03:14:46 | 只看該作者
Distributed Methods for Reinforcement Learning Surveyroaches. We introduce the general principle and problem formulation, and discuss the historical development of distributed methods. We also analyze technical challenges, such as process communication and memory requirements, and give an overview of different application areas.
50#
發(fā)表于 2025-3-30 07:25:37 | 只看該作者
er auf dem Gebiet Automotive.Includes supplementary material.Kraftfahrzeuge bestimmen wesentlich unser t?gliches Leben. Ihre Entwicklung ist eng verknüpft mit der jeweiligen wirtschaftlichen, politischen und sozialen Situation. Eine wichtige Rolle spielen die wissenschaftlichen Methoden und Erkenntn
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 23:23
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
河北区| 密云县| 富裕县| 宁陕县| 岳池县| 东城区| 都昌县| 东方市| 北川| 白水县| 博乐市| 湾仔区| 鄯善县| 隆子县| 巫溪县| 长岛县| 上饶县| 蓬莱市| 承德县| 灵武市| 化州市| 沂源县| 遂宁市| 沛县| 丹巴县| 东光县| 安乡县| 通化县| 内江市| 江孜县| 涞水县| 湖北省| 太和县| 巩义市| 灵台县| 涟水县| 铅山县| 吴川市| 长葛市| 纳雍县| 石景山区|