找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning Algorithms: Analysis and Applications; Boris Belousov,Hany Abdulsamad,Jan Peters Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Hayes
21#
發(fā)表于 2025-3-25 05:57:38 | 只看該作者
Persistent Homology for Dimensionality Reductionmetric properties of the data. Theoretical underpinnings of the method are presented together with computational algorithms and successful applications in various areas of machine learning. The goal of this chapter is to introduce persistent homology as a practical tool for dimensionality reduction to reinforcement learning researchers.
22#
發(fā)表于 2025-3-25 10:02:21 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:41 | 只看該作者
24#
發(fā)表于 2025-3-25 16:26:04 | 只看該作者
25#
發(fā)表于 2025-3-25 21:47:20 | 只看該作者
Reward Function Design in Reinforcement LearningNevertheless, the mainstream of RL research in recent years has been preoccupied with the development and analysis of learning algorithms, treating the reward signal as given and not subject to change. As the learning algorithms have matured, it is now time to revisit the questions of reward functio
26#
發(fā)表于 2025-3-26 02:22:28 | 只看該作者
27#
發(fā)表于 2025-3-26 06:09:58 | 只看該作者
A Survey on Constraining Policy Updates Using the KL Divergenceampled from an environment eliminates the problem of accumulating model errors that model-based methods suffer from. However, model-free methods are less sample efficient compared to their model-based counterparts and may yield unstable policy updates when the step size between successive policy upd
28#
發(fā)表于 2025-3-26 09:22:44 | 只看該作者
Fisher Information Approximations in Policy Gradient Methodson algorithms. The update direction in NPG-based algorithms is found by preconditioning the usual gradient with the inverse of the Fisher information matrix (FIM). Estimation and approximation of the FIM and FIM-vector products (FVP) are therefore of crucial importance for enabling applications of t
29#
發(fā)表于 2025-3-26 12:50:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:09:05 | 只看該作者
Information-Loss-Bounded Policy Optimization as transforming the constrained TRPO problem into an unconstrained one, either via turning the constraint into a penalty or via objective clipping. In this chapter, an alternative problem reformulation is studied, where the information loss is bounded using a novel transformation of the KullbackLei
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
楚雄市| 平遥县| 泗阳县| 恩施市| 稻城县| 江华| 靖江市| 徐汇区| 鲁山县| 满城县| 秦皇岛市| 天镇县| 肃北| 祁连县| 策勒县| 留坝县| 祥云县| 阜宁县| 台南市| 祥云县| 沐川县| 于都县| 二连浩特市| 休宁县| 巴青县| 太湖县| 云南省| 柳河县| 天柱县| 马公市| 南宫市| 汉寿县| 克拉玛依市| 仁化县| 邢台县| 开鲁县| 滦平县| 杭锦旗| 清徐县| 左贡县| 华池县|