找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Operator Theory and Its Applications; International Confer I. Gohberg,P. Lancaster,P. N. Shivakumar Conference proce

[復制鏈接]
樓主: DEBUT
11#
發(fā)表于 2025-3-23 13:09:42 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:51 | 只看該作者
13#
發(fā)表于 2025-3-23 20:45:43 | 只看該作者
,On Spectral Properties of Schr?dinger-Type Operator with Complex Potential, is relatively form-bounded with respect to (-Δ). + ?.(.) with relative bound zero (therefore . has purely discrete spectrum). In the framework of the general perturbation approach, we study the spectral asymptotics and the Riesz basisness for the generalized eigenfunctions of ..
14#
發(fā)表于 2025-3-23 22:16:57 | 只看該作者
15#
發(fā)表于 2025-3-24 05:37:45 | 只看該作者
16#
發(fā)表于 2025-3-24 07:49:48 | 只看該作者
17#
發(fā)表于 2025-3-24 11:32:03 | 只看該作者
18#
發(fā)表于 2025-3-24 18:13:06 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:14 | 只看該作者
Spline approximation methods for Wiener- Hopf operators,nd for Wiener-Hopf operators with piecewise continuous generating function. By means of localization techniques and of the two-projections-theorem, necessary and sufficient conditions for the stability of sequences in this algebra are derived.
20#
發(fā)表于 2025-3-25 02:56:32 | 只看該作者
Inertia Conditions for the Minimization of Quadratic Forms in Indefinite Metric Spaces,lutions can be established by invoking a fundamental set of inertia conditions. While these inertia conditions are automatically satisfied in a standard Hilbert space setting, which is the case of classical least-squares problems in both the deterministic and stochastic frameworks, they nevertheless
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
西林县| 满洲里市| 仁布县| 通榆县| 望江县| 万州区| 老河口市| 江达县| 皮山县| 通辽市| 海淀区| 德江县| 汝南县| 乌拉特前旗| 通江县| 石家庄市| 班戈县| 罗源县| 海城市| 安顺市| 富裕县| 阿勒泰市| 屯昌县| 娱乐| 通榆县| 吉林省| 长岛县| 赫章县| 广平县| 嘉荫县| 田阳县| 黎平县| 得荣县| 廉江市| 阿克苏市| 和龙市| 阳东县| 红原县| 肇庆市| 高邮市| 瑞昌市|