找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Reinforcement Learning; 8th European Worksho Sertan Girgin,Manuel Loth,Daniil Ryabko Conference proceedings 2008 Springe

[復(fù)制鏈接]
樓主: coerce
31#
發(fā)表于 2025-3-26 21:31:03 | 只看該作者
A Near Optimal Policy for Channel Allocation in Cognitive Radio,P). In this contribution, we consider a previously proposed model for a channel allocation task and develop an approach to compute a near optimal policy. The proposed method is based on approximate (point based) value iteration in a continuous state Markov Decision Process (MDP) which uses a specifi
32#
發(fā)表于 2025-3-27 02:55:26 | 只看該作者
33#
發(fā)表于 2025-3-27 07:50:05 | 只看該作者
34#
發(fā)表于 2025-3-27 12:02:17 | 只看該作者
Basis Expansion in Natural Actor Critic Methods, goal by directly approximating the policy using a parametric function approximator; the expected return of the current policy is estimated and its parameters are updated by steepest ascent in the direction of the gradient of the expected return with respect to the policy parameters. In general, the
35#
發(fā)表于 2025-3-27 15:10:13 | 只看該作者
36#
發(fā)表于 2025-3-27 19:12:06 | 只看該作者
Optimistic Planning of Deterministic Systems, from that state and using any sequence of actions. This forms a tree whose size is exponential in the planning time horizon. Here we ask the question: given finite computational resources (e.g. CPU time), which may not be known ahead of time, what is the best way to explore this tree, such that onc
37#
發(fā)表于 2025-3-27 22:26:12 | 只看該作者
38#
發(fā)表于 2025-3-28 02:07:15 | 只看該作者
Tile Coding Based on Hyperplane Tiles,nction approximator that has been successfully applied to many reinforcement learning tasks. In this paper we introduce the hyperplane tile coding, in which the usual tiles are replaced by parameterized hyperplanes that approximate the action-value function. We compared the performance of hyperplane
39#
發(fā)表于 2025-3-28 09:25:59 | 只看該作者
40#
發(fā)表于 2025-3-28 11:58:45 | 只看該作者
Applications of Reinforcement Learning to Structured Prediction,ructured outputs such as sequences, trees or graphs. When predicting such structured data, learning models have to select solutions within very large discrete spaces. The combinatorial nature of this problem has recently led to learning models integrating a search component..In this paper, we show t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永修县| 肃南| 伊川县| 盈江县| 米泉市| 广德县| 哈密市| 肇东市| 新兴县| 沂源县| 谷城县| 崇仁县| 新乡市| 三门县| 宝清县| 南皮县| 陆川县| 诏安县| 阿巴嘎旗| 桐乡市| 侯马市| 翁牛特旗| 定南县| 多伦县| 阿瓦提县| 来凤县| 武威市| 民权县| 疏附县| 通州市| 洪雅县| 宝山区| 翁源县| 新竹市| 曲麻莱县| 滨州市| 阳江市| 武汉市| 平南县| 会同县| 石台县|