找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Reinforcement Learning; 8th European Worksho Sertan Girgin,Manuel Loth,Daniil Ryabko Conference proceedings 2008 Springe

[復制鏈接]
樓主: coerce
21#
發(fā)表于 2025-3-25 04:33:56 | 只看該作者
Reinforcement Learning with the Use of Costly Features, features that are sufficiently informative to justify their computation. We illustrate the learning behavior of our approach using a simple experimental domain that allows us to explore the effects of a range of costs on the cost-performance trade-off.
22#
發(fā)表于 2025-3-25 08:04:32 | 只看該作者
Exploiting Additive Structure in Factored MDPs for Reinforcement Learning, which cannot exploit the additive structure of a .. In this paper, we present two new instantiations of ., namely . and ., using a linear programming based planning method that can exploit the additive structure of a . and address problems out of reach of ..
23#
發(fā)表于 2025-3-25 15:44:41 | 只看該作者
Bayesian Reward Filtering,orcement learning, as well as a specific implementation based on sigma point Kalman filtering and kernel machines. This allows us to derive an efficient off-policy model-free approximate temporal differences algorithm which will be demonstrated on two simple benchmarks.
24#
發(fā)表于 2025-3-25 16:25:33 | 只看該作者
25#
發(fā)表于 2025-3-25 23:02:03 | 只看該作者
26#
發(fā)表于 2025-3-26 02:59:44 | 只看該作者
Lazy Planning under Uncertainty by Optimizing Decisions on an Ensemble of Incomplete Disturbance Tre number of elements. In this context, the problem of finding from an initial state .. an optimal decision strategy can be stated as an optimization problem which aims at finding an optimal combination of decisions attached to the nodes of a . modeling all possible sequences of disturbances .., ..,
27#
發(fā)表于 2025-3-26 05:50:41 | 只看該作者
28#
發(fā)表于 2025-3-26 09:02:38 | 只看該作者
Algorithms and Bounds for Rollout Sampling Approximate Policy Iteration,ng as a supervised learning problem, have been proposed recently. Finding good policies with such methods requires not only an appropriate classifier, but also reliable examples of best actions, covering the state space sufficiently. Up to this time, little work has been done on appropriate covering
29#
發(fā)表于 2025-3-26 13:34:56 | 只看該作者
30#
發(fā)表于 2025-3-26 20:14:17 | 只看該作者
Regularized Fitted Q-Iteration: Application to Planning,. We propose to use fitted Q-iteration with penalized (or regularized) least-squares regression as the regression subroutine to address the problem of controlling model-complexity. The algorithm is presented in detail for the case when the function space is a reproducing-kernel Hilbert space underly
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
甘谷县| 南岸区| 自贡市| 南昌市| 老河口市| 乌拉特前旗| 景洪市| 呈贡县| 叙永县| 景泰县| 蒲城县| 兴文县| 宁安市| 尼木县| 上饶县| 桂林市| 内乡县| 宁武县| 平南县| 永济市| 平果县| 南丹县| 监利县| 铜川市| 岳西县| 台东市| 额尔古纳市| 剑河县| 叶城县| 股票| 庄浪县| 隆子县| 雅安市| 大竹县| 达孜县| 华池县| 武义县| 延川县| 黄梅县| 门源| 台东县|