找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Reinforcement Learning; 8th European Worksho Sertan Girgin,Manuel Loth,Daniil Ryabko Conference proceedings 2008 Springe

[復(fù)制鏈接]
樓主: coerce
21#
發(fā)表于 2025-3-25 04:33:56 | 只看該作者
Reinforcement Learning with the Use of Costly Features, features that are sufficiently informative to justify their computation. We illustrate the learning behavior of our approach using a simple experimental domain that allows us to explore the effects of a range of costs on the cost-performance trade-off.
22#
發(fā)表于 2025-3-25 08:04:32 | 只看該作者
Exploiting Additive Structure in Factored MDPs for Reinforcement Learning, which cannot exploit the additive structure of a .. In this paper, we present two new instantiations of ., namely . and ., using a linear programming based planning method that can exploit the additive structure of a . and address problems out of reach of ..
23#
發(fā)表于 2025-3-25 15:44:41 | 只看該作者
Bayesian Reward Filtering,orcement learning, as well as a specific implementation based on sigma point Kalman filtering and kernel machines. This allows us to derive an efficient off-policy model-free approximate temporal differences algorithm which will be demonstrated on two simple benchmarks.
24#
發(fā)表于 2025-3-25 16:25:33 | 只看該作者
25#
發(fā)表于 2025-3-25 23:02:03 | 只看該作者
26#
發(fā)表于 2025-3-26 02:59:44 | 只看該作者
Lazy Planning under Uncertainty by Optimizing Decisions on an Ensemble of Incomplete Disturbance Tre number of elements. In this context, the problem of finding from an initial state .. an optimal decision strategy can be stated as an optimization problem which aims at finding an optimal combination of decisions attached to the nodes of a . modeling all possible sequences of disturbances .., ..,
27#
發(fā)表于 2025-3-26 05:50:41 | 只看該作者
28#
發(fā)表于 2025-3-26 09:02:38 | 只看該作者
Algorithms and Bounds for Rollout Sampling Approximate Policy Iteration,ng as a supervised learning problem, have been proposed recently. Finding good policies with such methods requires not only an appropriate classifier, but also reliable examples of best actions, covering the state space sufficiently. Up to this time, little work has been done on appropriate covering
29#
發(fā)表于 2025-3-26 13:34:56 | 只看該作者
30#
發(fā)表于 2025-3-26 20:14:17 | 只看該作者
Regularized Fitted Q-Iteration: Application to Planning,. We propose to use fitted Q-iteration with penalized (or regularized) least-squares regression as the regression subroutine to address the problem of controlling model-complexity. The algorithm is presented in detail for the case when the function space is a reproducing-kernel Hilbert space underly
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰西县| 滦南县| 黔东| 岳普湖县| 河源市| 天长市| 宁远县| 永州市| 叶城县| 彰化县| 额尔古纳市| 龙岩市| 双牌县| 平舆县| 措勤县| 正镶白旗| 延庆县| 巴东县| 新建县| 胶南市| 略阳县| 樟树市| 乌拉特前旗| 衡南县| 新竹市| 林州市| 墨玉县| 张家界市| 阜新市| 深圳市| 陆河县| 天全县| 石台县| 万州区| 台江县| 历史| 鄂温| 大同市| 金山区| 龙川县| 蓝山县|