找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Mathematical Analysis; Celebrating the 70th Anna Maria Candela,Mirella Cappelletti Montano,Eli Book 2023 The Editor(s) (

[復(fù)制鏈接]
樓主: 大破壞
41#
發(fā)表于 2025-3-28 17:11:47 | 只看該作者
42#
發(fā)表于 2025-3-28 22:10:15 | 只看該作者
,A Strong Variant of Weyl’s Theorem Under Functional Calculus and Perturbations,The aim of this paper is the study of a new and strong variant (.) of the classical Weyl’s theorem, for operators defined on Banach spaces, under functional calculus. Furthermore, we give some results on the permanence of (.) theorem under commuting perturbations, as algebraic or finite-dimensional commuting perturbations.
43#
發(fā)表于 2025-3-28 23:34:33 | 只看該作者
44#
發(fā)表于 2025-3-29 03:08:30 | 只看該作者
45#
發(fā)表于 2025-3-29 11:16:19 | 只看該作者
A Degenerate Operator in Non Divergence Form,In this paper we consider a fourth order operator in non divergence form .?:=?., where . is a function that degenerates somewhere in the interval. We prove that the operator generates an analytic semigroup, under suitable assumptions on the function .. We extend these results to a general operator .?:=?..
46#
發(fā)表于 2025-3-29 11:35:03 | 只看該作者
47#
發(fā)表于 2025-3-29 17:22:36 | 只看該作者
48#
發(fā)表于 2025-3-29 21:06:34 | 只看該作者
On Oscillatory Behavior of Third Order Half-Linear Difference Equations,This paper deals with the oscillatory behavior of third order half-linear difference equations. We present new oscillation criteria, which improve, extend and simplify existing ones in the literature. The results are illustrated by some examples.
49#
發(fā)表于 2025-3-30 01:20:57 | 只看該作者
Anna Maria Candela,Mirella Cappelletti Montano,EliCovers some of the most innovative topics in Mathematical Analysis.Includes papers by respected researchers in the field of Mathematical Analysis.Promotes the interchange of ideas among researches in
50#
發(fā)表于 2025-3-30 07:01:00 | 只看該作者
978-3-031-20023-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌图县| 慈溪市| 图们市| 楚雄市| 铜陵市| 金门县| 承德市| 元谋县| 云和县| 霍州市| 武城县| 交口县| 田东县| 图们市| 连平县| 阜平县| 旌德县| 绿春县| 翼城县| 康平县| 梅州市| 吐鲁番市| 乌什县| 四子王旗| 琼海市| 拉萨市| 台北县| 盘山县| 鄂托克前旗| 普洱| 浑源县| 太仓市| 遂昌县| 武强县| 七台河市| 弋阳县| 双鸭山市| 九龙县| 西昌市| 都匀市| 会理县|