找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Mathematical Analysis; Celebrating the 70th Anna Maria Candela,Mirella Cappelletti Montano,Eli Book 2023 The Editor(s) (

[復(fù)制鏈接]
樓主: 大破壞
21#
發(fā)表于 2025-3-25 06:05:51 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:32 | 只看該作者
Norm and Essential Norm of Composition Operators Mapping into Weighted Banach Spaces of Harmonic Maapply our results to the case when the composition operator acts on the members of a class of harmonic Hilbert spaces. We obtain an exact formula of the essential norm, which holds in particular for the harmonic Hardy space, the harmonic Bergman space, the harmonic Dirichlet space, and the harmonic Bloch space.
23#
發(fā)表于 2025-3-25 15:16:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:21:35 | 只看該作者
25#
發(fā)表于 2025-3-25 19:59:22 | 只看該作者
2297-0215 lysis.Promotes the interchange of ideas among researches in This book collects selected peer reviewed papers on the topics of Nonlinear Analysis, Functional Analysis, (Korovkin-Type) Approximation Theory, and Partial Differential Equations. The aim of the volume is, in fact, to promote the connectio
26#
發(fā)表于 2025-3-26 03:43:52 | 只看該作者
,On Wachnicki’s Generalization of the Gauss–Weierstrass Integral,a generalization of the heat equation. The main result is an asymptotic expansion for the operators when applied to a function belonging to a rather large class. An essential auxiliary result is a localization theorem which is interesting in itself.
27#
發(fā)表于 2025-3-26 08:23:43 | 只看該作者
28#
發(fā)表于 2025-3-26 12:12:09 | 只看該作者
29#
發(fā)表于 2025-3-26 15:03:53 | 只看該作者
30#
發(fā)表于 2025-3-26 18:46:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奈曼旗| 略阳县| 道孚县| 辰溪县| 方正县| 阳新县| 鄯善县| 赤壁市| 惠州市| 湖北省| 东兴市| 三门峡市| 五河县| 清远市| 怀仁县| 安泽县| 环江| 林周县| 永兴县| 万荣县| 隆昌县| 岳阳县| 黄山市| 汉沽区| 微山县| 金塔县| 乐昌市| 通渭县| 古交市| 孝昌县| 九寨沟县| 页游| 治多县| 靖宇县| 即墨市| 普定县| 平塘县| 申扎县| 茂名市| 泗洪县| 通许县|