找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasidifferential Calculus; V. F. Demyanov,L. C. W. Dixon Book 1986Latest edition Springer-Verlag Berlin Heidelberg 1986 differential calc

[復制鏈接]
查看: 51299|回復: 57
樓主
發(fā)表于 2025-3-21 17:50:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Quasidifferential Calculus
編輯V. F. Demyanov,L. C. W. Dixon
視頻videohttp://file.papertrans.cn/782/781630/781630.mp4
叢書名稱Mathematical Programming Studies
圖書封面Titlebook: Quasidifferential Calculus;  V. F. Demyanov,L. C. W. Dixon Book 1986Latest edition Springer-Verlag Berlin Heidelberg 1986 differential calc
出版日期Book 1986Latest edition
關(guān)鍵詞differential calculus
版次1
doihttps://doi.org/10.1007/BFb0121132
isbn_ebook978-3-642-00929-7Series ISSN 0303-3929 Series E-ISSN 2364-8201
issn_series 0303-3929
copyrightSpringer-Verlag Berlin Heidelberg 1986
The information of publication is updating

書目名稱Quasidifferential Calculus影響因子(影響力)




書目名稱Quasidifferential Calculus影響因子(影響力)學科排名




書目名稱Quasidifferential Calculus網(wǎng)絡公開度




書目名稱Quasidifferential Calculus網(wǎng)絡公開度學科排名




書目名稱Quasidifferential Calculus被引頻次




書目名稱Quasidifferential Calculus被引頻次學科排名




書目名稱Quasidifferential Calculus年度引用




書目名稱Quasidifferential Calculus年度引用學科排名




書目名稱Quasidifferential Calculus讀者反饋




書目名稱Quasidifferential Calculus讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:00:07 | 只看該作者
Quasidifferentiable functions: Necessary conditions and descent directions, It is important that the optimality conditions should be expressed in a form which yields some information concerning search directions if the point under examination does not satisfy the necessary conditions. It is shown that most of the conditions discussed here provide such information.
板凳
發(fā)表于 2025-3-22 04:08:17 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:36 | 只看該作者
A directional implicit function theorem for quasidifferentiable functions,urciau, J. Warga). In this paper, we consider the case of quasidifferentiable functions. It is shown that to obtain nontrivial results it is necessary to study a directional implicit function problem (it turns out that in some directions there are several functions, while in others there are none).
5#
發(fā)表于 2025-3-22 09:28:00 | 只看該作者
6#
發(fā)表于 2025-3-22 15:31:02 | 只看該作者
7#
發(fā)表于 2025-3-22 17:48:54 | 只看該作者
8#
發(fā)表于 2025-3-22 21:17:18 | 只看該作者
Quasidifferentiable functions: Necessary conditions and descent directions,erentials of the functions involved (i.e., the function to be optimized and a function describing the set over which optimization is to be performed). It is important that the optimality conditions should be expressed in a form which yields some information concerning search directions if the point
9#
發(fā)表于 2025-3-23 04:37:29 | 只看該作者
Quasidifferential calculus and first-order optimality conditions in nonsmooth optimization,ly homogeneous functions representable as the sum of sublinear and superlinear functions or, equivalently, as the difference of two sublinear functions (d.s.l. functions). The resulting optimality conditions are expressed in the form of set inclusions. The idea of such approximations is exploited th
10#
發(fā)表于 2025-3-23 06:58:49 | 只看該作者
On minimizing the sum of a convex function and a concave function,ex function and a concave function. It is shown that in an .-dimensional space this problem is equivalent to the problem of minimizing a concave function on a convex set. A successive approximations method is suggested; this makes use of some of the principles of ∈-steepest-descent-type approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 10:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
柞水县| 克什克腾旗| 闽清县| 乌兰察布市| 神池县| 罗甸县| 新化县| 定兴县| 明光市| 敦化市| 天门市| 漯河市| 江津市| 大姚县| 宜川县| 商南县| 望江县| 鞍山市| 广河县| 揭西县| 南京市| 吉木乃县| 南岸区| 柳河县| 山阳县| 南陵县| 千阳县| 鸡西市| 历史| 和林格尔县| 绵竹市| 宁武县| 金寨县| 达孜县| 关岭| 台安县| 晋江市| 辽阳县| 青田县| 监利县| 五莲县|