找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasidifferential Calculus; V. F. Demyanov,L. C. W. Dixon Book 1986Latest edition Springer-Verlag Berlin Heidelberg 1986 differential calc

[復(fù)制鏈接]
查看: 51308|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:50:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quasidifferential Calculus
編輯V. F. Demyanov,L. C. W. Dixon
視頻videohttp://file.papertrans.cn/782/781630/781630.mp4
叢書名稱Mathematical Programming Studies
圖書封面Titlebook: Quasidifferential Calculus;  V. F. Demyanov,L. C. W. Dixon Book 1986Latest edition Springer-Verlag Berlin Heidelberg 1986 differential calc
出版日期Book 1986Latest edition
關(guān)鍵詞differential calculus
版次1
doihttps://doi.org/10.1007/BFb0121132
isbn_ebook978-3-642-00929-7Series ISSN 0303-3929 Series E-ISSN 2364-8201
issn_series 0303-3929
copyrightSpringer-Verlag Berlin Heidelberg 1986
The information of publication is updating

書目名稱Quasidifferential Calculus影響因子(影響力)




書目名稱Quasidifferential Calculus影響因子(影響力)學(xué)科排名




書目名稱Quasidifferential Calculus網(wǎng)絡(luò)公開度




書目名稱Quasidifferential Calculus網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quasidifferential Calculus被引頻次




書目名稱Quasidifferential Calculus被引頻次學(xué)科排名




書目名稱Quasidifferential Calculus年度引用




書目名稱Quasidifferential Calculus年度引用學(xué)科排名




書目名稱Quasidifferential Calculus讀者反饋




書目名稱Quasidifferential Calculus讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:00:07 | 只看該作者
Quasidifferentiable functions: Necessary conditions and descent directions, It is important that the optimality conditions should be expressed in a form which yields some information concerning search directions if the point under examination does not satisfy the necessary conditions. It is shown that most of the conditions discussed here provide such information.
板凳
發(fā)表于 2025-3-22 04:08:17 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:36 | 只看該作者
A directional implicit function theorem for quasidifferentiable functions,urciau, J. Warga). In this paper, we consider the case of quasidifferentiable functions. It is shown that to obtain nontrivial results it is necessary to study a directional implicit function problem (it turns out that in some directions there are several functions, while in others there are none).
5#
發(fā)表于 2025-3-22 09:28:00 | 只看該作者
6#
發(fā)表于 2025-3-22 15:31:02 | 只看該作者
7#
發(fā)表于 2025-3-22 17:48:54 | 只看該作者
8#
發(fā)表于 2025-3-22 21:17:18 | 只看該作者
Quasidifferentiable functions: Necessary conditions and descent directions,erentials of the functions involved (i.e., the function to be optimized and a function describing the set over which optimization is to be performed). It is important that the optimality conditions should be expressed in a form which yields some information concerning search directions if the point
9#
發(fā)表于 2025-3-23 04:37:29 | 只看該作者
Quasidifferential calculus and first-order optimality conditions in nonsmooth optimization,ly homogeneous functions representable as the sum of sublinear and superlinear functions or, equivalently, as the difference of two sublinear functions (d.s.l. functions). The resulting optimality conditions are expressed in the form of set inclusions. The idea of such approximations is exploited th
10#
發(fā)表于 2025-3-23 06:58:49 | 只看該作者
On minimizing the sum of a convex function and a concave function,ex function and a concave function. It is shown that in an .-dimensional space this problem is equivalent to the problem of minimizing a concave function on a convex set. A successive approximations method is suggested; this makes use of some of the principles of ∈-steepest-descent-type approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静安区| 平昌县| 浦北县| 策勒县| 河北省| 乳山市| 景宁| 武强县| 平塘县| 叙永县| 松溪县| 旺苍县| 敦煌市| 碌曲县| 宜州市| 崇信县| 时尚| 长寿区| 林甸县| 霍城县| 蒲江县| 商水县| 义乌市| 澜沧| 大英县| 玛沁县| 含山县| 麟游县| 沭阳县| 廉江市| 昆山市| 安多县| 论坛| 永定县| 鹿邑县| 米易县| 聂拉木县| 抚顺县| 宁海县| 武平县| 巴彦县|