找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Quantum Signatures of Chaos; Fritz Haake Book 20103rd edition Springer-Verlag Berlin Heidelberg 2010 Chaos.Clustering.classical Hamiltonia

[復(fù)制鏈接]
樓主: 指責(zé)
41#
發(fā)表于 2025-3-28 16:11:27 | 只看該作者
42#
發(fā)表于 2025-3-28 21:51:19 | 只看該作者
43#
發(fā)表于 2025-3-29 02:34:28 | 只看該作者
Resource value of desert shrubs 12 D. Iraq, a brief introduction to the country 14 1. Environment 14 2. Population 17 3. Land use 18 4. Vegetation 19 I. INTRODUCTION I. A. Scope of the study The degradation of renewable natural resources in the arid areas of South West Asia has become a matter of gr
44#
發(fā)表于 2025-3-29 04:05:53 | 只看該作者
Book 20103rd editionerhaps most conspicable extension, I describe the understanding of u- versal spectral ?uctuations recently reached on the basis of periodic-orbit theory. To make the presentation of those semiclassical developments selfcontained, I decided to to underpin them by a new short chapter on classical Hami
45#
發(fā)表于 2025-3-29 10:11:47 | 只看該作者
46#
發(fā)表于 2025-3-29 13:40:49 | 只看該作者
47#
發(fā)表于 2025-3-29 16:46:05 | 只看該作者
Dissipative Systems,hand, approach so-called strange attractors whose geometry is determined by Cantor sets and their fractal dimension. In analogy with the Hamiltonian case, the two classical possibilities of simple and strange attractors are washed out by quantum fluctuations.
48#
發(fā)表于 2025-3-29 22:33:22 | 只看該作者
Classical Hamiltonian Chaos,bare minimum since many excellent texts on classical chaos are available [1–5]. Readers with a good command of nonlinear dynamics might want to right away start with Sect. 9.14 where I begin expounding the fact that long periodic orbits of hyperbolic systems are not independent individuals but rathe
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九寨沟县| 息烽县| 夏津县| 甘孜| 利辛县| 六枝特区| 那曲县| 旺苍县| 常山县| 讷河市| 屏东县| 白银市| 剑阁县| 理塘县| 正安县| 成安县| 莱西市| 新建县| 凤翔县| 察雅县| 秦安县| 京山县| 怀化市| 娄底市| 卢龙县| 元朗区| 沙湾县| 积石山| 醴陵市| 丹阳市| 晋城| 遂宁市| 崇文区| 惠来县| 湖州市| 林口县| 安仁县| 多伦县| 云安县| 茶陵县| 怀集县|