找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Signatures of Chaos; Fritz Haake Book 20103rd edition Springer-Verlag Berlin Heidelberg 2010 Chaos.Clustering.classical Hamiltonia

[復制鏈接]
查看: 31724|回復: 47
樓主
發(fā)表于 2025-3-21 18:03:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Quantum Signatures of Chaos
編輯Fritz Haake
視頻videohttp://file.papertrans.cn/782/781454/781454.mp4
概述Fully updated and expanded 3rd edition of a now classic text..Presents new material on classical Hamiltonian chaos to make the presentation of all semi-classical developments self-contained..Provides
叢書名稱Springer Series in Synergetics
圖書封面Titlebook: Quantum Signatures of Chaos;  Fritz Haake Book 20103rd edition Springer-Verlag Berlin Heidelberg 2010 Chaos.Clustering.classical Hamiltonia
描述Nine years have passed since I dispatched the second edition, and the book still appears to be in demand. The time may be ripe for an update. As the perhaps most conspicable extension, I describe the understanding of u- versal spectral ?uctuations recently reached on the basis of periodic-orbit theory. To make the presentation of those semiclassical developments selfcontained, I decided to to underpin them by a new short chapter on classical Hamiltonian mechanics. Inasmuch as the semiclassical theory not only draws inspiration from the nonlinear sigma model but actually aims at constructing that model in terms of periodic orbits, it appeared indicated to make small additions to the previous treatment within the chapter on superanalysis. Less voluminous but as close to my heart are additions to the chapter on level dynamics which close previous gaps in that approach to spectral universality. It was a pleasant duty to pay my respect to collegues in our Transregio- Sonderforschungsbereich, Martin Zirnbauer, Alex Altland, Alan Huckleberry, and Peter Heinzner, by including a short account of their beautiful work on nonstandard symmetry classes. The chapter on random matrices has not bee
出版日期Book 20103rd edition
關鍵詞Chaos; Clustering; classical Hamiltonian chaos; dissipative systems; level dynamics; linear optimization;
版次3
doihttps://doi.org/10.1007/978-3-642-05428-0
isbn_softcover978-3-642-26330-9
isbn_ebook978-3-642-05428-0Series ISSN 0172-7389 Series E-ISSN 2198-333X
issn_series 0172-7389
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書目名稱Quantum Signatures of Chaos影響因子(影響力)




書目名稱Quantum Signatures of Chaos影響因子(影響力)學科排名




書目名稱Quantum Signatures of Chaos網絡公開度




書目名稱Quantum Signatures of Chaos網絡公開度學科排名




書目名稱Quantum Signatures of Chaos被引頻次




書目名稱Quantum Signatures of Chaos被引頻次學科排名




書目名稱Quantum Signatures of Chaos年度引用




書目名稱Quantum Signatures of Chaos年度引用學科排名




書目名稱Quantum Signatures of Chaos讀者反饋




書目名稱Quantum Signatures of Chaos讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:57:20 | 只看該作者
Random-Matrix Theory,splay global chaos in their classical phase spaces. Exceptions apart, all such Hamiltonian matrices of sufficiently large dimension yield the same spectral fluctuations provided they have the same group of canonical transformations (see Chap. 2).
板凳
發(fā)表于 2025-3-22 02:48:05 | 只看該作者
Dissipative Systems,hand, approach so-called strange attractors whose geometry is determined by Cantor sets and their fractal dimension. In analogy with the Hamiltonian case, the two classical possibilities of simple and strange attractors are washed out by quantum fluctuations.
地板
發(fā)表于 2025-3-22 06:24:59 | 只看該作者
5#
發(fā)表于 2025-3-22 10:56:32 | 只看該作者
6#
發(fā)表于 2025-3-22 13:29:06 | 只看該作者
7#
發(fā)表于 2025-3-22 17:13:31 | 只看該作者
https://doi.org/10.1007/978-3-642-05428-0Chaos; Clustering; classical Hamiltonian chaos; dissipative systems; level dynamics; linear optimization;
8#
發(fā)表于 2025-3-23 00:16:23 | 只看該作者
978-3-642-26330-9Springer-Verlag Berlin Heidelberg 2010
9#
發(fā)表于 2025-3-23 01:58:55 | 只看該作者
Quantum Signatures of Chaos978-3-642-05428-0Series ISSN 0172-7389 Series E-ISSN 2198-333X
10#
發(fā)表于 2025-3-23 08:29:47 | 只看該作者
Time Reversal and Unitary Symmetries,A classical Hamiltonian system is called time-reversal invariant if from any given solution .(.), .(.) of Hamilton’s equations an independent solution .′(.′), .′(.′), is obtained with t′ = ?t and some operation relating .′ and .′ to the original coordinates . and momenta ..
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 10:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
莱西市| 中山市| 米泉市| 呈贡县| 巨野县| 修武县| 邵武市| 辽源市| 都兰县| 保山市| 儋州市| 宁德市| 正镶白旗| 兴国县| 木兰县| 乌恰县| 岳阳市| 额济纳旗| 贵溪市| 兴文县| 绥芬河市| 乌拉特中旗| 宝应县| 聂荣县| 南平市| 沙洋县| 鹿泉市| 兴和县| 三江| 阿拉善左旗| 云安县| 望谟县| 华池县| 裕民县| 西盟| 和田县| 富宁县| 金华市| 东港市| 拉萨市| 白朗县|