找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Field Theory and Functional Integrals; An Introduction to F Nima Moshayedi Book 2023 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
查看: 8513|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:13:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Quantum Field Theory and Functional Integrals
副標(biāo)題An Introduction to F
編輯Nima Moshayedi
視頻videohttp://file.papertrans.cn/782/781190/781190.mp4
概述Gives a compact guide to the mathematical structure of quantum field theory.Explains concisely the relation of the Schr?dinger picture of quantum mechanics with Feynman‘s path integral approach.Includ
叢書(shū)名稱SpringerBriefs in Physics
圖書(shū)封面Titlebook: Quantum Field Theory and Functional Integrals; An Introduction to F Nima Moshayedi Book 2023 The Editor(s) (if applicable) and The Author(s
描述Described here is Feynman‘s path integral approach to quantum mechanics and quantum field theory from a functional integral point of view. Therein lies the main focus of Euclidean field theory. The notion of Gaussian measure and the construction of the Wiener measure are covered. As well, the notion of classical mechanics and the Schr?dinger picture of quantum mechanics are recalled. There, the equivalence to the path integral formalism is shown by deriving the quantum mechanical propagator from it. Additionally, an introduction to elements of constructive quantum field theory is provided for readers.?
出版日期Book 2023
關(guān)鍵詞QFT; Schr?dinger equation; Path integral; Constructive QFT; Quantization
版次1
doihttps://doi.org/10.1007/978-981-99-3530-7
isbn_softcover978-981-99-3529-1
isbn_ebook978-981-99-3530-7Series ISSN 2191-5423 Series E-ISSN 2191-5431
issn_series 2191-5423
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱Quantum Field Theory and Functional Integrals影響因子(影響力)




書(shū)目名稱Quantum Field Theory and Functional Integrals影響因子(影響力)學(xué)科排名




書(shū)目名稱Quantum Field Theory and Functional Integrals網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Quantum Field Theory and Functional Integrals網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Quantum Field Theory and Functional Integrals被引頻次




書(shū)目名稱Quantum Field Theory and Functional Integrals被引頻次學(xué)科排名




書(shū)目名稱Quantum Field Theory and Functional Integrals年度引用




書(shū)目名稱Quantum Field Theory and Functional Integrals年度引用學(xué)科排名




書(shū)目名稱Quantum Field Theory and Functional Integrals讀者反饋




書(shū)目名稱Quantum Field Theory and Functional Integrals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:33:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:43:47 | 只看該作者
地板
發(fā)表于 2025-3-22 05:57:30 | 只看該作者
https://doi.org/10.1007/978-981-99-3530-7QFT; Schr?dinger equation; Path integral; Constructive QFT; Quantization
5#
發(fā)表于 2025-3-22 11:07:31 | 只看該作者
Construction of Quantum Field Theories,rent approaches for its description. In particular, we are interested in the functional integral approach as we have seen for the special case of quantum mechanics, which is a 1-dimensional field theory. Moreover, similarly to the case of quantum mechanics, we would like to formulate . in order to fully describe a quantum field theory.
6#
發(fā)表于 2025-3-22 15:46:46 | 只看該作者
978-981-99-3529-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
7#
發(fā)表于 2025-3-22 19:03:02 | 只看該作者
Quantum Field Theory and Functional Integrals978-981-99-3530-7Series ISSN 2191-5423 Series E-ISSN 2191-5431
8#
發(fā)表于 2025-3-22 22:55:37 | 只看該作者
Introduction,n by smooth functions . on the phase space, i.e., .. By time-evolution, each position and momentum coordinate of the considered mass particle changes and thus everything depends on the time .. So, in fact, we have ..
9#
發(fā)表于 2025-3-23 02:03:24 | 只看該作者
Book 2023s the main focus of Euclidean field theory. The notion of Gaussian measure and the construction of the Wiener measure are covered. As well, the notion of classical mechanics and the Schr?dinger picture of quantum mechanics are recalled. There, the equivalence to the path integral formalism is shown
10#
發(fā)表于 2025-3-23 06:44:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳城县| 龙川县| 上高县| 镇沅| 习水县| 射阳县| 格尔木市| 邯郸县| 嵊泗县| 乾安县| 兴业县| 来宾市| 宁化县| 海南省| 湖南省| 台中市| 阿坝县| 安陆市| 五河县| 固阳县| 香格里拉县| 苏州市| 元朗区| 永丰县| 桐梓县| 阳高县| 随州市| 礼泉县| 砀山县| 中卫市| 甘南县| 四川省| 甘谷县| 锦州市| 东乡县| 松阳县| 缙云县| 永济市| 石柱| 沙河市| 留坝县|