找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Field Theory and Functional Integrals; An Introduction to F Nima Moshayedi Book 2023 The Editor(s) (if applicable) and The Author(s

[復制鏈接]
查看: 8514|回復: 35
樓主
發(fā)表于 2025-3-21 16:13:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Quantum Field Theory and Functional Integrals
副標題An Introduction to F
編輯Nima Moshayedi
視頻videohttp://file.papertrans.cn/782/781190/781190.mp4
概述Gives a compact guide to the mathematical structure of quantum field theory.Explains concisely the relation of the Schr?dinger picture of quantum mechanics with Feynman‘s path integral approach.Includ
叢書名稱SpringerBriefs in Physics
圖書封面Titlebook: Quantum Field Theory and Functional Integrals; An Introduction to F Nima Moshayedi Book 2023 The Editor(s) (if applicable) and The Author(s
描述Described here is Feynman‘s path integral approach to quantum mechanics and quantum field theory from a functional integral point of view. Therein lies the main focus of Euclidean field theory. The notion of Gaussian measure and the construction of the Wiener measure are covered. As well, the notion of classical mechanics and the Schr?dinger picture of quantum mechanics are recalled. There, the equivalence to the path integral formalism is shown by deriving the quantum mechanical propagator from it. Additionally, an introduction to elements of constructive quantum field theory is provided for readers.?
出版日期Book 2023
關鍵詞QFT; Schr?dinger equation; Path integral; Constructive QFT; Quantization
版次1
doihttps://doi.org/10.1007/978-981-99-3530-7
isbn_softcover978-981-99-3529-1
isbn_ebook978-981-99-3530-7Series ISSN 2191-5423 Series E-ISSN 2191-5431
issn_series 2191-5423
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Quantum Field Theory and Functional Integrals影響因子(影響力)




書目名稱Quantum Field Theory and Functional Integrals影響因子(影響力)學科排名




書目名稱Quantum Field Theory and Functional Integrals網絡公開度




書目名稱Quantum Field Theory and Functional Integrals網絡公開度學科排名




書目名稱Quantum Field Theory and Functional Integrals被引頻次




書目名稱Quantum Field Theory and Functional Integrals被引頻次學科排名




書目名稱Quantum Field Theory and Functional Integrals年度引用




書目名稱Quantum Field Theory and Functional Integrals年度引用學科排名




書目名稱Quantum Field Theory and Functional Integrals讀者反饋




書目名稱Quantum Field Theory and Functional Integrals讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:33:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:43:47 | 只看該作者
地板
發(fā)表于 2025-3-22 05:57:30 | 只看該作者
https://doi.org/10.1007/978-981-99-3530-7QFT; Schr?dinger equation; Path integral; Constructive QFT; Quantization
5#
發(fā)表于 2025-3-22 11:07:31 | 只看該作者
Construction of Quantum Field Theories,rent approaches for its description. In particular, we are interested in the functional integral approach as we have seen for the special case of quantum mechanics, which is a 1-dimensional field theory. Moreover, similarly to the case of quantum mechanics, we would like to formulate . in order to fully describe a quantum field theory.
6#
發(fā)表于 2025-3-22 15:46:46 | 只看該作者
978-981-99-3529-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
7#
發(fā)表于 2025-3-22 19:03:02 | 只看該作者
Quantum Field Theory and Functional Integrals978-981-99-3530-7Series ISSN 2191-5423 Series E-ISSN 2191-5431
8#
發(fā)表于 2025-3-22 22:55:37 | 只看該作者
Introduction,n by smooth functions . on the phase space, i.e., .. By time-evolution, each position and momentum coordinate of the considered mass particle changes and thus everything depends on the time .. So, in fact, we have ..
9#
發(fā)表于 2025-3-23 02:03:24 | 只看該作者
Book 2023s the main focus of Euclidean field theory. The notion of Gaussian measure and the construction of the Wiener measure are covered. As well, the notion of classical mechanics and the Schr?dinger picture of quantum mechanics are recalled. There, the equivalence to the path integral formalism is shown
10#
發(fā)表于 2025-3-23 06:44:39 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 20:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
林周县| 肃南| 怀安县| 株洲市| 广安市| 香港| 吉首市| 平泉县| 绥中县| 泾源县| 苏尼特右旗| 剑川县| 周至县| 龙州县| 原阳县| 枞阳县| 竹溪县| 鄂伦春自治旗| 高尔夫| 宜城市| 黄大仙区| 鹤峰县| 中西区| 霍邱县| 高陵县| 乌审旗| 江油市| 陇南市| 时尚| 潍坊市| 江口县| 莎车县| 奎屯市| 竹北市| 台北县| 山阳县| 莎车县| 旺苍县| 冷水江市| 枞阳县| 肇州县|