找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Calculus; Victor Kac,Pokman Cheung Textbook 2002 Victor Kac. 2002 Derivative.Hypergeometric function.Partition.Quantum Calculus.Qu

[復(fù)制鏈接]
樓主: centipede
41#
發(fā)表于 2025-3-28 15:06:10 | 只看該作者
42#
發(fā)表于 2025-3-28 22:08:16 | 只看該作者
43#
發(fā)表于 2025-3-29 02:32:18 | 只看該作者
44#
發(fā)表于 2025-3-29 05:04:40 | 只看該作者
-Binomial Coefficients and Linear Algebra over Finite Fields,In this chapter we explain an important combinatorial meaning of the .-binomial coefficients.
45#
發(fā)表于 2025-3-29 08:21:03 | 只看該作者
46#
發(fā)表于 2025-3-29 11:28:18 | 只看該作者
-Trigonometric Functions,The .-analogues of the sine and cosine functions can be defined in anal-ogy with their well-known Euler expressions in terms of the exponential function.
47#
發(fā)表于 2025-3-29 16:28:46 | 只看該作者
48#
發(fā)表于 2025-3-29 21:03:18 | 只看該作者
49#
發(fā)表于 2025-3-30 02:05:50 | 只看該作者
,More on Heine’s Formula and the General Binomial,Inspired by (13.16) and (13.17), it is natural to generalize the notion of a .-binomial in the following way.
50#
發(fā)表于 2025-3-30 07:33:52 | 只看該作者
Ramanujan Product Formula,In this chapter, we apply Heine’s formula to prove a remarkable identity discovered by the Indian mathematician Ramanujan. This identity relates a . to an infinite product, and it has many interesting applications in number theory, which will be discussed in subsequent chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丹县| 西乡县| 鞍山市| 山东省| 汪清县| 永仁县| 正镶白旗| 靖西县| 江安县| 梅州市| 普定县| 呈贡县| 广汉市| 卢氏县| 福州市| 星座| 开远市| 商河县| 彭州市| 樟树市| 泸西县| 贵溪市| 久治县| 武鸣县| 塘沽区| 即墨市| 太康县| 洛隆县| 历史| 陵川县| 庆安县| 梁山县| 广安市| 平江县| 昆明市| 凤凰县| 桐梓县| 南昌县| 宁化县| 抚顺市| 波密县|