找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Calculus; Victor Kac,Pokman Cheung Textbook 2002 Victor Kac. 2002 Derivative.Hypergeometric function.Partition.Quantum Calculus.Qu

[復(fù)制鏈接]
查看: 40151|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:23:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Quantum Calculus
編輯Victor Kac,Pokman Cheung
視頻videohttp://file.papertrans.cn/782/781051/781051.mp4
概述Includes supplementary material:
叢書(shū)名稱(chēng)Universitext
圖書(shū)封面Titlebook: Quantum Calculus;  Victor Kac,Pokman Cheung Textbook 2002 Victor Kac. 2002 Derivative.Hypergeometric function.Partition.Quantum Calculus.Qu
描述In one sentence, quantum calculus is the ordinary calculus without taking limits. This undergraduate text develops two types of quantum calculi, the q-calculus and the h-calculus. As this book develops quantum calculus along the lines of traditional calculus, we discover, with a remarkable inevitability, many important notions and results of classical mathematics. This book is written at the level of a first course in calculus and linear algebra and is aimed at undergraduate and beginning graduate students in mathematics, computer science, and physics. It is based on lectures and seminars given by the second author over the last few years at MIT.
出版日期Textbook 2002
關(guān)鍵詞Derivative; Hypergeometric function; Partition; Quantum Calculus; Quantum Groups; calculus; combinatorics
版次1
doihttps://doi.org/10.1007/978-1-4613-0071-7
isbn_softcover978-0-387-95341-0
isbn_ebook978-1-4613-0071-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightVictor Kac. 2002
The information of publication is updating

書(shū)目名稱(chēng)Quantum Calculus影響因子(影響力)




書(shū)目名稱(chēng)Quantum Calculus影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Quantum Calculus網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Quantum Calculus網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Quantum Calculus被引頻次




書(shū)目名稱(chēng)Quantum Calculus被引頻次學(xué)科排名




書(shū)目名稱(chēng)Quantum Calculus年度引用




書(shū)目名稱(chēng)Quantum Calculus年度引用學(xué)科排名




書(shū)目名稱(chēng)Quantum Calculus讀者反饋




書(shū)目名稱(chēng)Quantum Calculus讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:58:00 | 只看該作者
Properties of ,-Binomial Coefficients,cover the ordinary binomial coefficients if we take . → 1, we expect their .-analogues to have similar properties. Firstly, as already remarked in (5.4), . follows exactly the classical result. However, the correspondence is more subtle for another identity of binomial coefficients, the Pascal rule:
板凳
發(fā)表于 2025-3-22 02:37:42 | 只看該作者
地板
發(fā)表于 2025-3-22 05:43:40 | 只看該作者
5#
發(fā)表于 2025-3-22 11:46:53 | 只看該作者
6#
發(fā)表于 2025-3-22 13:51:48 | 只看該作者
7#
發(fā)表于 2025-3-22 19:04:26 | 只看該作者
8#
發(fā)表于 2025-3-23 00:54:33 | 只看該作者
9#
發(fā)表于 2025-3-23 03:02:21 | 只看該作者
0172-5939 evelops two types of quantum calculi, the q-calculus and the h-calculus. As this book develops quantum calculus along the lines of traditional calculus, we discover, with a remarkable inevitability, many important notions and results of classical mathematics. This book is written at the level of a f
10#
發(fā)表于 2025-3-23 08:36:05 | 只看該作者
,-Taylor’s Formula for Formal Power Series and Heine’s Binomial Formula,e. It is “formal” because often we do not worry about whether the series converges or not, and we can operate on (for example, differentiate) the series formally. We have to assume . and . to be zero in order to avoid divergence problems. Of course, .(0) = . by definition.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡觉县| 阳新县| 遵义县| 盈江县| 保靖县| 天等县| 普安县| 通城县| 英吉沙县| 鸡西市| 阜宁县| 留坝县| 广昌县| 天峻县| 无棣县| 安西县| 溧阳市| 雷波县| 汉沽区| 左贡县| 阳原县| 安阳市| 台江县| 东乌珠穆沁旗| 民权县| 乐至县| 台江县| 梁平县| 九龙坡区| 皋兰县| 西城区| 文成县| 田阳县| 得荣县| 南宁市| 古丈县| 常德市| 灵璧县| 安化县| 仙居县| 社旗县|