找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantization on Nilpotent Lie Groups; Veronique Fischer,Michael Ruzhansky Book‘‘‘‘‘‘‘‘ 2016 The Editor(s) (if applicable) and the Author(s

[復(fù)制鏈接]
樓主: 使醉
11#
發(fā)表于 2025-3-23 11:28:22 | 只看該作者
12#
發(fā)表于 2025-3-23 17:41:27 | 只看該作者
13#
發(fā)表于 2025-3-23 20:10:43 | 只看該作者
Rockland operators and Sobolev spaces,Laplacians to the non-stratified but still homogeneous (graded) setting. The terminology comes from a property conjectured by Rockland and eventually proved by Helffer and Nourrigat in [HN79], see Section 4.1.3.
14#
發(fā)表于 2025-3-23 22:43:08 | 只看該作者
Quantization on graded Lie groups, their fractional powers and their associated Sobolev spaces studied in Chapter 4. As we have pointed out in the introduction, the graded Lie groups then become the natural setting for such analysis in the context of general nilpotent Lie groups.
15#
發(fā)表于 2025-3-24 04:39:01 | 只看該作者
16#
發(fā)表于 2025-3-24 07:43:45 | 只看該作者
17#
發(fā)表于 2025-3-24 12:17:19 | 只看該作者
0743-1643 nd of homogeneous operators on such groups.Features a consis.This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topi
18#
發(fā)表于 2025-3-24 15:45:06 | 只看該作者
Quantization on compact Lie groups, fact that the unitary irreducible representations of compact Lie groups are all finite dimensional. Here, in order to motivate the developments on nilpotent groups, which is the main subject of the present monograph, we briefly review key elements of this theory referring to [RT10a] or to other sources for proofs and further details.
19#
發(fā)表于 2025-3-24 22:04:42 | 只看該作者
Book‘‘‘‘‘‘‘‘ 2016e theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups...The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize..
20#
發(fā)表于 2025-3-25 01:36:11 | 只看該作者
Preliminaries on Lie groups,t proofs referring the reader for more details to excellent sources where this material is treated from different points of view; for example, the monographs by Chevalley [Che99], Fegan [Feg91], Nomizu [Nom56], Pontryagin [Pon66], to mention only a few.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广安市| 阿城市| 米脂县| 仙居县| 松桃| 连江县| 石楼县| 临漳县| 六枝特区| 栾川县| 海伦市| 子长县| 连江县| 许昌县| 昭通市| 手游| 广德县| 察隅县| 兰坪| 罗源县| 福建省| 蒙城县| 上饶县| 宝兴县| 绿春县| 张掖市| 正定县| 无为县| 儋州市| 云南省| 芦山县| 曲靖市| 札达县| 鄯善县| 叙永县| 孝感市| 高密市| 临西县| 克山县| 辽宁省| 荣成市|