找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantization on Nilpotent Lie Groups; Veronique Fischer,Michael Ruzhansky Book‘‘‘‘‘‘‘‘ 2016 The Editor(s) (if applicable) and the Author(s

[復(fù)制鏈接]
查看: 23429|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:09:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Quantization on Nilpotent Lie Groups
編輯Veronique Fischer,Michael Ruzhansky
視頻videohttp://file.papertrans.cn/782/781028/781028.mp4
概述First Open Access book in the Birkh?user program.Contains a detailed and easy-to-follow exposition of nilpotent and homogeneous Lie groups and of homogeneous operators on such groups.Features a consis
叢書名稱Progress in Mathematics
圖書封面Titlebook: Quantization on Nilpotent Lie Groups;  Veronique Fischer,Michael Ruzhansky Book‘‘‘‘‘‘‘‘ 2016 The Editor(s) (if applicable) and the Author(s
描述.This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups...The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize..
出版日期Book‘‘‘‘‘‘‘‘ 2016
關(guān)鍵詞graded Lie groups; Heisenberg group; compact Lie groups; pseudo-differential operators; Sobolev spaces; s
版次1
doihttps://doi.org/10.1007/978-3-319-29558-9
isbn_softcover978-3-319-80599-3
isbn_ebook978-3-319-29558-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightThe Editor(s) (if applicable) and the Author(s) 2016
The information of publication is updating

書目名稱Quantization on Nilpotent Lie Groups影響因子(影響力)




書目名稱Quantization on Nilpotent Lie Groups影響因子(影響力)學(xué)科排名




書目名稱Quantization on Nilpotent Lie Groups網(wǎng)絡(luò)公開度




書目名稱Quantization on Nilpotent Lie Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quantization on Nilpotent Lie Groups被引頻次




書目名稱Quantization on Nilpotent Lie Groups被引頻次學(xué)科排名




書目名稱Quantization on Nilpotent Lie Groups年度引用




書目名稱Quantization on Nilpotent Lie Groups年度引用學(xué)科排名




書目名稱Quantization on Nilpotent Lie Groups讀者反饋




書目名稱Quantization on Nilpotent Lie Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:36 | 只看該作者
Quantization on graded Lie groups, their fractional powers and their associated Sobolev spaces studied in Chapter 4. As we have pointed out in the introduction, the graded Lie groups then become the natural setting for such analysis in the context of general nilpotent Lie groups.
板凳
發(fā)表于 2025-3-22 04:23:03 | 只看該作者
Pseudo-differential operators on the Heisenberg group, the Heisenberg group and of its many realisations, we start this chapter by sketching various descriptions of the Heisenberg group. We also describe its dual via the well known Schr?dinger representations. Eventually, we particularise our general approach given in Chapter 5 to the Heisenberg group.
地板
發(fā)表于 2025-3-22 06:36:38 | 只看該作者
5#
發(fā)表于 2025-3-22 12:24:05 | 只看該作者
6#
發(fā)表于 2025-3-22 14:49:19 | 只看該作者
978-3-319-80599-3The Editor(s) (if applicable) and the Author(s) 2016
7#
發(fā)表于 2025-3-22 17:34:41 | 只看該作者
Quantization on Nilpotent Lie Groups978-3-319-29558-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
8#
發(fā)表于 2025-3-23 01:02:54 | 只看該作者
9#
發(fā)表于 2025-3-23 02:45:10 | 只看該作者
Homogeneous Lie groups, latter setting are usually more singular than their Euclidean counterparts. However it is possible to adapt the technique in harmonic analysis to still treat many questions in this more abstract setting
10#
發(fā)表于 2025-3-23 07:38:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双桥区| 波密县| 临高县| 如皋市| 正安县| 宝应县| 根河市| 肇庆市| 大名县| 乌拉特前旗| 马尔康县| 承德市| 上饶县| 鹤壁市| 德庆县| 邵武市| 常山县| 黑山县| 英吉沙县| 曲阜市| 夏津县| 桐城市| 广灵县| 宕昌县| 惠东县| 富阳市| 云安县| 晋中市| 富民县| 彰化市| 曲水县| 古蔺县| 厦门市| 南澳县| 孝义市| 和田市| 砚山县| 辽宁省| 建始县| 临泉县| 新乡市|