找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quandles and Topological Pairs; Symmetry, Knots, and Takefumi Nosaka Book 2017 The Author(s) 2017 Quandle.Relative objects.Low dimensional

[復(fù)制鏈接]
樓主: 投降
11#
發(fā)表于 2025-3-23 10:56:42 | 只看該作者
Book 2017ons and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constitutes a crash course for studying quandles..More precisely, this work emphasizes the fresh perspective that quandle theory can be useful for the study
12#
發(fā)表于 2025-3-23 15:37:45 | 只看該作者
Some of Quandle Cocycle Invariants of Links,o a shadow version, a non-abelian one, and a bigraded one (see Sects.?.–. respectively). In this chapter, we study the invariants with various versions in turn. We assume basic knowledge of CW-complexes (see the textbook [Hat]).
13#
發(fā)表于 2025-3-23 21:13:56 | 只看該作者
Topology of the Rack Space and the 2-Cocycle Invariant,?., we give some examples. The reader who is interested only in the cocycle invariants may safely skip to Chap.?.. .. In this chapter, by . we always mean a quandle, and by .(.) we do the connected components of ..
14#
發(fā)表于 2025-3-24 00:05:42 | 只看該作者
,Inoue–Kabaya Chain Map,ns (in particular, the fundamental 3-class). After that, following the outline and philosophy, we describe concrete applications. To be precise, in Sect.?., we recover the Chern-Simons invariants of hyperbolic links, and in Sect.?., we will reconsider the bilinear cohomology pairings of links.
15#
發(fā)表于 2025-3-24 03:36:44 | 只看該作者
,-Colorings of Links,and list some examples with applications. In Sect.?., we briefly observe a relation between colorings and the braid group. Here, we assume that the reader has the elementary knowledge in knot theory (for this, we refer the reader to the books [Hil,Lic, BZ] or Appendix A).
16#
發(fā)表于 2025-3-24 08:15:59 | 只看該作者
Topology on the Quandle Homotopy Invariant,group homology. After that, in Sect.?., we discuss the homotopy type of the rack space of the link quandle; In Sect.?., we give a topological meaning of the quandle homotopy link-invariant. Finally, we provide a method of computing the third quandle homology; see Sect.?..
17#
發(fā)表于 2025-3-24 12:43:30 | 只看該作者
18#
發(fā)表于 2025-3-24 18:39:18 | 只看該作者
,-Colorings of Links,e knot quandle. Precisely, in Sect.?., we define colorings and observe examples. In Sect.? ., we see a topological characterization of the colorings, and list some examples with applications. In Sect.?., we briefly observe a relation between colorings and the braid group. Here, we assume that the re
19#
發(fā)表于 2025-3-24 20:29:50 | 只看該作者
Some of Quandle Cocycle Invariants of Links,uced by Fenn-Rourke-Sanderson [FRS1, FRS2], and is graded by a homotopy group. After that, from the homological viewpoints, Carter-Jelsovsky-Kamada-Langford-Saito [CJKLS] used quandle cocycles to introduce computable link-invariants (which are called .). Furthermore, the invariants are generalized t
20#
發(fā)表于 2025-3-25 02:35:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒲江县| 吉水县| 南充市| 丹江口市| 胶州市| 长汀县| 福清市| 甘肃省| 武威市| 闻喜县| 抚顺县| 天津市| 开鲁县| 温泉县| 黄龙县| 涪陵区| 苏州市| 富川| 东乡族自治县| 常德市| 资阳市| 临清市| 灵璧县| 台南县| 望城县| 库车县| 濮阳市| 平安县| 昌平区| 盘山县| 通江县| 镇巴县| 中西区| 富源县| 中超| 遂溪县| 星座| 朔州市| 句容市| 镇原县| 岱山县|