找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quandles and Topological Pairs; Symmetry, Knots, and Takefumi Nosaka Book 2017 The Author(s) 2017 Quandle.Relative objects.Low dimensional

[復(fù)制鏈接]
查看: 24767|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:50:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quandles and Topological Pairs
副標(biāo)題Symmetry, Knots, and
編輯Takefumi Nosaka
視頻videohttp://file.papertrans.cn/781/780645/780645.mp4
概述Shows how the quandle has been evaluated in relation to mathematics or topology while the quandle was often considered to be something combinatorial.Constitutes a guide on quandles at a time when few
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Quandles and Topological Pairs; Symmetry, Knots, and Takefumi Nosaka Book 2017 The Author(s) 2017 Quandle.Relative objects.Low dimensional
描述This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constitutes a crash course for studying quandles..More precisely, this work emphasizes the fresh perspective that quandle theory can be useful for the study of low-dimensional topology (e.g., knot theory) and relative objects with symmetry. The direction of research is summarized as “We shall thoroughly (re)interpret the previous studies of relative symmetry in terms of the quandle”. The perspectives contained herein can be summarized by the following topics. The first is on relative objects .G/H., where .G. and .H. are groups, e.g., polyhedrons, reflection, and symmetric spaces. Next, central extensions of groups are discussed, e.g., spin structures, .K.2 groups,and some geometric anomalies. The third topic is a method to study relative information on a 3-dimensional manifold with a boundary, e.g., knot theory, relative cup products, and relative group cohomology..For applications in topology,
出版日期Book 2017
關(guān)鍵詞Quandle; Relative objects; Low dimensional topology; Knot; Group cohomology and cup products
版次1
doihttps://doi.org/10.1007/978-981-10-6793-8
isbn_softcover978-981-10-6792-1
isbn_ebook978-981-10-6793-8Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2017
The information of publication is updating

書目名稱Quandles and Topological Pairs影響因子(影響力)




書目名稱Quandles and Topological Pairs影響因子(影響力)學(xué)科排名




書目名稱Quandles and Topological Pairs網(wǎng)絡(luò)公開度




書目名稱Quandles and Topological Pairs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quandles and Topological Pairs被引頻次




書目名稱Quandles and Topological Pairs被引頻次學(xué)科排名




書目名稱Quandles and Topological Pairs年度引用




書目名稱Quandles and Topological Pairs年度引用學(xué)科排名




書目名稱Quandles and Topological Pairs讀者反饋




書目名稱Quandles and Topological Pairs讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:53 | 只看該作者
Book 2017ions of groups are discussed, e.g., spin structures, .K.2 groups,and some geometric anomalies. The third topic is a method to study relative information on a 3-dimensional manifold with a boundary, e.g., knot theory, relative cup products, and relative group cohomology..For applications in topology,
板凳
發(fā)表于 2025-3-22 01:15:28 | 只看該作者
地板
發(fā)表于 2025-3-22 08:11:06 | 只看該作者
5#
發(fā)表于 2025-3-22 09:04:53 | 只看該作者
6#
發(fā)表于 2025-3-22 15:58:02 | 只看該作者
7#
發(fā)表于 2025-3-22 19:12:51 | 只看該作者
8#
發(fā)表于 2025-3-22 22:28:00 | 只看該作者
Takefumi NosakaShows how the quandle has been evaluated in relation to mathematics or topology while the quandle was often considered to be something combinatorial.Constitutes a guide on quandles at a time when few
9#
發(fā)表于 2025-3-23 02:49:23 | 只看該作者
10#
發(fā)表于 2025-3-23 09:04:19 | 只看該作者
Relative Group Homology,ersion. After that, we give some examples, where the concept of malnormality is important. Furthermore, in Sect.?., we explicitly give some cocycles of relative group cohomology. Throughout this chapter, we represent a group by . and a right .-module by ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永济市| 盱眙县| 胶州市| 富源县| 安顺市| 镇安县| 文登市| 辽宁省| 建宁县| 灵宝市| 商丘市| 彭州市| 辽宁省| 罗定市| 阳春市| 北海市| 浦东新区| 桦川县| 汤阴县| 南岸区| 高要市| 嘉兴市| 新乡市| 昌都县| 郸城县| 三原县| 江门市| 南汇区| 青岛市| 攀枝花市| 阜宁县| 固镇县| 娄底市| 海淀区| 三门县| 衢州市| 吉安县| 钟山县| 平阴县| 双辽市| 榆社县|