找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic and Hermitian Forms; Winfried Scharlau Book 1985 Springer-Verlag Berlin Heidelberg 1985 Abstract algebra.Impress.arithmetic.boun

[復(fù)制鏈接]
樓主: incoherent
11#
發(fā)表于 2025-3-23 11:59:15 | 只看該作者
Clifford Algebras, is of fundamental importance in the algebraic theory of quadratic forms. In particular, the invariants . introduced in chapter 2 find a natural interpretation here. Many properties of these invariants are obvious in the context of Clifford algebras. Moreover, it is easy to include the case of chara
12#
發(fā)表于 2025-3-23 15:57:04 | 只看該作者
Hermitian Forms over Global Fields,hapter these results correspond roughly to the basic results of chapter 1 about quadratic forms. Though the fundamentals of both theories — quadratic forms and hermitian forms — are quite similar, the two have grown in different directions. In particular, there does not exist an algebraic theory of
13#
發(fā)表于 2025-3-23 21:54:31 | 只看該作者
0072-7830 e great number theorists of the eighteenth and nineteenth century was concerned with problems about quadratic forms. On the basis of their work, Minkowski, Siegel, Hasse, Eichler and many others crea- ted the impressive "arithmetic" theory of quadratic forms, which has been the object of the well-kn
14#
發(fā)表于 2025-3-23 22:40:15 | 只看該作者
15#
發(fā)表于 2025-3-24 04:30:12 | 只看該作者
16#
發(fā)表于 2025-3-24 07:52:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:52 | 只看該作者
18#
發(fā)表于 2025-3-24 16:49:21 | 只看該作者
Symmetric Bilinear Forms over Dedekind Rings and Global Fields,gs of integers is developed in detail in several books, especially O’Meara [1963] (to be referred to by OM). However, in the last few years several interesting results have been added to this theory. These new results, particularly those concerning the calculation of the Witt group are emphasized in this chapter.
19#
發(fā)表于 2025-3-24 21:45:37 | 只看該作者
Simple Algebras and Involutions,ny interesting connections between the theory of quadratic and hermitian forms on the one hand and the theory of simple algebras and involutions on the other. We want to mention the most important ones, though not all will be pursued in this book:.And most basically:
20#
發(fā)表于 2025-3-25 02:49:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夹江县| 沧州市| 会宁县| 青海省| 哈巴河县| 饶平县| 铁岭县| 时尚| 平塘县| 吉安市| 连平县| 渝中区| 原平市| 丰城市| 云和县| 虎林市| 吉林省| 安达市| 孟连| 克拉玛依市| 天峻县| 宝清县| 宣化县| 八宿县| 玛纳斯县| 昌江| 盐亭县| 启东市| 苍溪县| 平遥县| 鞍山市| 思南县| 城口县| 杭锦旗| 丹寨县| 聂拉木县| 肃宁县| 达拉特旗| 江口县| 手机| 瑞昌市|