找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic and Hermitian Forms; Winfried Scharlau Book 1985 Springer-Verlag Berlin Heidelberg 1985 Abstract algebra.Impress.arithmetic.boun

[復(fù)制鏈接]
查看: 14780|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:35:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Quadratic and Hermitian Forms
編輯Winfried Scharlau
視頻videohttp://file.papertrans.cn/781/780055/780055.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Quadratic and Hermitian Forms;  Winfried Scharlau Book 1985 Springer-Verlag Berlin Heidelberg 1985 Abstract algebra.Impress.arithmetic.boun
描述For a long time - at least from Fermat to Minkowski - the theory of quadratic forms was a part of number theory. Much of the best work of the great number theorists of the eighteenth and nineteenth century was concerned with problems about quadratic forms. On the basis of their work, Minkowski, Siegel, Hasse, Eichler and many others crea- ted the impressive "arithmetic" theory of quadratic forms, which has been the object of the well-known books by Bachmann (1898/1923), Eichler (1952), and O‘Meara (1963). Parallel to this development the ideas of abstract algebra and abstract linear algebra introduced by Dedekind, Frobenius, E. Noether and Artin led to today‘s structural mathematics with its emphasis on classification problems and general structure theorems. On the basis of both - the number theory of quadratic forms and the ideas of modern algebra - Witt opened, in 1937, a new chapter in the theory of quadratic forms. His most fruitful idea was to consider not single "individual" quadratic forms but rather the entity of all forms over a fixed ground field and to construct from this an algebra- ic object. This object - the Witt ring - then became the principal object of the entire
出版日期Book 1985
關(guān)鍵詞Abstract algebra; Impress; arithmetic; boundary element method; classification; development; finite field;
版次1
doihttps://doi.org/10.1007/978-3-642-69971-9
isbn_softcover978-3-642-69973-3
isbn_ebook978-3-642-69971-9Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1985
The information of publication is updating

書目名稱Quadratic and Hermitian Forms影響因子(影響力)




書目名稱Quadratic and Hermitian Forms影響因子(影響力)學(xué)科排名




書目名稱Quadratic and Hermitian Forms網(wǎng)絡(luò)公開度




書目名稱Quadratic and Hermitian Forms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quadratic and Hermitian Forms被引頻次




書目名稱Quadratic and Hermitian Forms被引頻次學(xué)科排名




書目名稱Quadratic and Hermitian Forms年度引用




書目名稱Quadratic and Hermitian Forms年度引用學(xué)科排名




書目名稱Quadratic and Hermitian Forms讀者反饋




書目名稱Quadratic and Hermitian Forms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:13:00 | 只看該作者
Hermitian Forms over Global Fields,suitable application of generic splitting fields and Frobenius functors). Nevertheless it seems that the theory of hermitian forms has a different character being more closely related to algebraic groups, algebras with involution, Galois cohomology, and algebraic .-theory.
板凳
發(fā)表于 2025-3-22 01:29:25 | 只看該作者
Basic Concepts, fields of characteristic unequal to 2. The reader who already knows these basic concepts can immediately start with chapter 2. The assumption on the characteristic of the ground field is superfluous in places. However, its use will enable us to avoid a series of inconvenient case distinctions and s
地板
發(fā)表于 2025-3-22 05:48:01 | 只看該作者
5#
發(fā)表于 2025-3-22 11:54:54 | 只看該作者
Quadratic Forms over Formally Real Fields, with quadratic forms over the field of real numbers. In the present chapter we will be interested in various generalizations of this result, and more generally in the connections between the theory of quadratic forms and the theory of ordered fields. Our ground field will be a formally real field,
6#
發(fā)表于 2025-3-22 13:47:21 | 只看該作者
Generic Methods and Pfister Forms,re the subject of this chapter. The investigation of Pfister forms is based essentially on the use of transcendental extensions of the ground field: One considers quadratic forms Σ .. with indeterminates . This approach leads naturally to the important concept of the function field of a quadratic fo
7#
發(fā)表于 2025-3-22 18:11:33 | 只看該作者
8#
發(fā)表于 2025-3-22 21:49:20 | 只看該作者
9#
發(fā)表于 2025-3-23 04:33:09 | 只看該作者
Foundations of the Theory of Hermitian Forms,As already indicated in chapter 1 one can replace the ground field by an arbitrary commutative ring. In this case it is appropriate to define forms on finitely generated projective modules. However even the commutativity of the ground ring need not be assumed. Instead one can consider an associative
10#
發(fā)表于 2025-3-23 07:10:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂伦春自治旗| 盐池县| 合水县| 昂仁县| 苏州市| 阿克苏市| 光山县| 苏尼特右旗| 忻州市| 靖西县| 务川| 仪征市| 泰安市| 甘孜县| 陕西省| 独山县| 米脂县| 资阳市| 义马市| 江都市| 五峰| 云龙县| 雅安市| 砀山县| 景谷| 三穗县| 京山县| 承德县| 隆回县| 东台市| 永昌县| 临武县| 深州市| 常宁市| 河北省| 嘉黎县| 滦平县| 乐平市| 夹江县| 永春县| 浦北县|