找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Residues and Non-Residues; Selected Topics Steve Wright Book 2016 Springer International Publishing Switzerland 2016 11-XX; 12D05

[復(fù)制鏈接]
樓主: Confer
31#
發(fā)表于 2025-3-26 22:15:44 | 只看該作者
,Gauss’ ,: The Law of Quadratic Reciprocity, solution of the congruence ..?≡?.. ? 4. mod ., and we also saw how the solution of ..?≡?. mod . for a composite modulus . can be reduced by way of Gauss’ algorithm to the solution of ..?≡?. mod . for prime numbers . and .. In this chapter, we will discuss a remarkable theorem known as the ., which
32#
發(fā)表于 2025-3-27 02:24:01 | 只看該作者
Four Interesting Applications of Quadratic Reciprocity,-residues can be pursued to a significantly deeper level. We have already seen some examples of how useful the LQR can be in answering questions about specific residues or non-residues. In this chapter, we will study four applications of the LQR which illustrate how it can be used to shed further li
33#
發(fā)表于 2025-3-27 07:25:37 | 只看該作者
34#
發(fā)表于 2025-3-27 12:46:54 | 只看該作者
Dirichlet ,-Functions and the Distribution of Quadratic Residues,le in the proof of Dirichlet’s theorem on prime numbers in arithmetic progression (Theorem?4.5). In this chapter, the fact that .(1,?.) is not only nonzero, but ., when . is real and non-principal, will be of central importance. The positivity of .(1,?.) comes into play because we are interested in
35#
發(fā)表于 2025-3-27 17:13:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:50:58 | 只看該作者
Quadratic Residues and Non-Residues in Arithmetic Progression, The work done in Chap.?. gave a window through which we viewed one of these formulations and also saw a very important technique used to study it. Another problem that has been studied almost as long and just as intensely is concerned with the arithmetic structure of residues and non-residues. In t
37#
發(fā)表于 2025-3-27 23:26:19 | 只看該作者
38#
發(fā)表于 2025-3-28 03:50:41 | 只看該作者
39#
發(fā)表于 2025-3-28 09:34:57 | 只看該作者
40#
發(fā)表于 2025-3-28 11:16:40 | 只看該作者
Four Interesting Applications of Quadratic Reciprocity, specific residues or non-residues. In this chapter, we will study four applications of the LQR which illustrate how it can be used to shed further light on interesting properties of residues and non-residues.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景泰县| 松滋市| 木里| 宁蒗| 鞍山市| 璧山县| 铜山县| 姚安县| 连平县| 太保市| 从化市| 安国市| 宁武县| 高台县| 瑞昌市| 南岸区| 肥西县| 宣武区| 扎兰屯市| 巴林右旗| 原平市| 彭阳县| 斗六市| 连城县| 盐津县| 乌兰县| 江陵县| 区。| 封丘县| 涡阳县| 天长市| 石楼县| 那曲县| 新野县| 本溪市| 昌江| 独山县| 太仆寺旗| 武川县| 沽源县| 满洲里市|