找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Residues and Non-Residues; Selected Topics Steve Wright Book 2016 Springer International Publishing Switzerland 2016 11-XX; 12D05

[復(fù)制鏈接]
樓主: Confer
31#
發(fā)表于 2025-3-26 22:15:44 | 只看該作者
,Gauss’ ,: The Law of Quadratic Reciprocity, solution of the congruence ..?≡?.. ? 4. mod ., and we also saw how the solution of ..?≡?. mod . for a composite modulus . can be reduced by way of Gauss’ algorithm to the solution of ..?≡?. mod . for prime numbers . and .. In this chapter, we will discuss a remarkable theorem known as the ., which
32#
發(fā)表于 2025-3-27 02:24:01 | 只看該作者
Four Interesting Applications of Quadratic Reciprocity,-residues can be pursued to a significantly deeper level. We have already seen some examples of how useful the LQR can be in answering questions about specific residues or non-residues. In this chapter, we will study four applications of the LQR which illustrate how it can be used to shed further li
33#
發(fā)表于 2025-3-27 07:25:37 | 只看該作者
34#
發(fā)表于 2025-3-27 12:46:54 | 只看該作者
Dirichlet ,-Functions and the Distribution of Quadratic Residues,le in the proof of Dirichlet’s theorem on prime numbers in arithmetic progression (Theorem?4.5). In this chapter, the fact that .(1,?.) is not only nonzero, but ., when . is real and non-principal, will be of central importance. The positivity of .(1,?.) comes into play because we are interested in
35#
發(fā)表于 2025-3-27 17:13:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:50:58 | 只看該作者
Quadratic Residues and Non-Residues in Arithmetic Progression, The work done in Chap.?. gave a window through which we viewed one of these formulations and also saw a very important technique used to study it. Another problem that has been studied almost as long and just as intensely is concerned with the arithmetic structure of residues and non-residues. In t
37#
發(fā)表于 2025-3-27 23:26:19 | 只看該作者
38#
發(fā)表于 2025-3-28 03:50:41 | 只看該作者
39#
發(fā)表于 2025-3-28 09:34:57 | 只看該作者
40#
發(fā)表于 2025-3-28 11:16:40 | 只看該作者
Four Interesting Applications of Quadratic Reciprocity, specific residues or non-residues. In this chapter, we will study four applications of the LQR which illustrate how it can be used to shed further light on interesting properties of residues and non-residues.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石屏县| 潜山县| 福泉市| 怀化市| 攀枝花市| 梅河口市| 腾冲县| 梨树县| 毕节市| 鄂温| 安图县| 彩票| 普陀区| 巴彦县| 兴安盟| 乐亭县| 策勒县| 天峻县| 当雄县| 寻乌县| 杭锦旗| 绥阳县| 苏州市| 吉木乃县| 安国市| 玉树县| 西峡县| 古浪县| 常山县| 镇安县| 丽水市| 布拖县| 泰和县| 吴堡县| 灯塔市| 上饶县| 昭觉县| 绿春县| 体育| 淮安市| 老河口市|