找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Residues and Non-Residues; Selected Topics Steve Wright Book 2016 Springer International Publishing Switzerland 2016 11-XX; 12D05

[復(fù)制鏈接]
查看: 20623|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:41:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quadratic Residues and Non-Residues
副標(biāo)題Selected Topics
編輯Steve Wright
視頻videohttp://file.papertrans.cn/781/780054/780054.mp4
概述Illustrates how the study of quadratic residues led directly to the development of fundamental methods in elementary, algebraic, and analytic number theory.Presents in detail seven proofs of the Law o
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Quadratic Residues and Non-Residues; Selected Topics Steve Wright Book 2016 Springer International Publishing Switzerland 2016 11-XX; 12D05
描述.This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory..The first three chapters present some basic facts and the history of quadratic residues?and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results?concerning the distribution and arithmetic structure of quadratic residues and non-residues,?provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and?advanced undergraduate students as well as for mathematicians interested in number theory..
出版日期Book 2016
關(guān)鍵詞11-XX; 12D05, 13B05, 52C05, 42A16, 42A20; quadratic residues; quadratic non-residues; law of quadratic
版次1
doihttps://doi.org/10.1007/978-3-319-45955-4
isbn_softcover978-3-319-45954-7
isbn_ebook978-3-319-45955-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Quadratic Residues and Non-Residues影響因子(影響力)




書目名稱Quadratic Residues and Non-Residues影響因子(影響力)學(xué)科排名




書目名稱Quadratic Residues and Non-Residues網(wǎng)絡(luò)公開度




書目名稱Quadratic Residues and Non-Residues網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quadratic Residues and Non-Residues被引頻次




書目名稱Quadratic Residues and Non-Residues被引頻次學(xué)科排名




書目名稱Quadratic Residues and Non-Residues年度引用




書目名稱Quadratic Residues and Non-Residues年度引用學(xué)科排名




書目名稱Quadratic Residues and Non-Residues讀者反饋




書目名稱Quadratic Residues and Non-Residues讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:00:02 | 只看該作者
地板
發(fā)表于 2025-3-22 05:55:36 | 只看該作者
Steve Wrights enzyme-linked secondary antibodies specific to the primary antibodies bound to the antigen-coated plates. Competitive ELISA involves a competition between the sample antigen and the plate-coated antigen for the primary antibody, followed by the binding of enzyme-linked secondary antibodies. Sandwi
5#
發(fā)表于 2025-3-22 11:36:23 | 只看該作者
6#
發(fā)表于 2025-3-22 13:27:27 | 只看該作者
7#
發(fā)表于 2025-3-22 18:08:11 | 只看該作者
8#
發(fā)表于 2025-3-23 00:51:53 | 只看該作者
9#
發(fā)表于 2025-3-23 02:37:06 | 只看該作者
Book 2016proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and?advanced undergraduate students as well as for mathematicians interested in number theory..
10#
發(fā)表于 2025-3-23 05:37:28 | 只看該作者
,Gauss’ ,: The Law of Quadratic Reciprocity,if ..?≡?5 mod 103 has any solutions. Since 5 is not congruent to 3 mod 4, the quadratic reciprocity law asserts that ..?≡?5 mod 103 and ..?≡?103 mod 5 are both solvable or both not. But solution of the latter congruence reduces to ..?≡?3 mod 5, which clearly has no solutions. Hence neither does ..?≡
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福鼎市| 枣庄市| 赤水市| 襄樊市| 温泉县| 黄冈市| 广安市| 秀山| 灵山县| 彭山县| 玛多县| 嘉善县| 涪陵区| 昭通市| 离岛区| 玉环县| 稷山县| 商洛市| 谢通门县| 香格里拉县| 黎平县| 宁南县| 宜阳县| 扬州市| 冀州市| 丰都县| 邢台市| 教育| 中山市| 峡江县| 合阳县| 安图县| 东安县| 西宁市| 惠安县| 华容县| 仁怀市| 资阳市| 邛崃市| 巫溪县| 孟津县|