找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Residues and Non-Residues; Selected Topics Steve Wright Book 2016 Springer International Publishing Switzerland 2016 11-XX; 12D05

[復(fù)制鏈接]
樓主: Confer
31#
發(fā)表于 2025-3-26 22:15:44 | 只看該作者
,Gauss’ ,: The Law of Quadratic Reciprocity, solution of the congruence ..?≡?.. ? 4. mod ., and we also saw how the solution of ..?≡?. mod . for a composite modulus . can be reduced by way of Gauss’ algorithm to the solution of ..?≡?. mod . for prime numbers . and .. In this chapter, we will discuss a remarkable theorem known as the ., which
32#
發(fā)表于 2025-3-27 02:24:01 | 只看該作者
Four Interesting Applications of Quadratic Reciprocity,-residues can be pursued to a significantly deeper level. We have already seen some examples of how useful the LQR can be in answering questions about specific residues or non-residues. In this chapter, we will study four applications of the LQR which illustrate how it can be used to shed further li
33#
發(fā)表于 2025-3-27 07:25:37 | 只看該作者
34#
發(fā)表于 2025-3-27 12:46:54 | 只看該作者
Dirichlet ,-Functions and the Distribution of Quadratic Residues,le in the proof of Dirichlet’s theorem on prime numbers in arithmetic progression (Theorem?4.5). In this chapter, the fact that .(1,?.) is not only nonzero, but ., when . is real and non-principal, will be of central importance. The positivity of .(1,?.) comes into play because we are interested in
35#
發(fā)表于 2025-3-27 17:13:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:50:58 | 只看該作者
Quadratic Residues and Non-Residues in Arithmetic Progression, The work done in Chap.?. gave a window through which we viewed one of these formulations and also saw a very important technique used to study it. Another problem that has been studied almost as long and just as intensely is concerned with the arithmetic structure of residues and non-residues. In t
37#
發(fā)表于 2025-3-27 23:26:19 | 只看該作者
38#
發(fā)表于 2025-3-28 03:50:41 | 只看該作者
39#
發(fā)表于 2025-3-28 09:34:57 | 只看該作者
40#
發(fā)表于 2025-3-28 11:16:40 | 只看該作者
Four Interesting Applications of Quadratic Reciprocity, specific residues or non-residues. In this chapter, we will study four applications of the LQR which illustrate how it can be used to shed further light on interesting properties of residues and non-residues.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
穆棱市| 应城市| 潜江市| 商水县| 汾西县| 阿克陶县| 犍为县| 澄江县| 红河县| 金沙县| 安康市| 开江县| 通城县| 龙井市| 左权县| 黄山市| 来安县| 阿拉尔市| 广安市| 鱼台县| 类乌齐县| 全州县| 建阳市| 酒泉市| 高唐县| 武强县| 固镇县| 黎平县| 长泰县| 开阳县| 邳州市| 蕲春县| 雷波县| 敦煌市| 普洱| 龙井市| 连云港市| 林西县| 邢台市| 东港市| 齐齐哈尔市|