找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups; Alexander J. Hahn Textbook 1994 Springer-Verlag New York, Inc. 1994 Ari

[復(fù)制鏈接]
樓主: 生動(dòng)
51#
發(fā)表于 2025-3-30 10:39:43 | 只看該作者
Dis(R) and Qu(R), a domain which is integrally closed in its field of fractions F. In this case, see Section D, separable quadratic algebras can be characterized as the integral closures of R in quadratic Galois extensions of F in which all prime ideals of R are unramified.
52#
發(fā)表于 2025-3-30 15:24:38 | 只看該作者
53#
發(fā)表于 2025-3-30 17:42:45 | 只看該作者
54#
發(fā)表于 2025-3-31 00:13:08 | 只看該作者
55#
發(fā)表于 2025-3-31 01:12:37 | 只看該作者
56#
發(fā)表于 2025-3-31 06:52:33 | 只看該作者
57#
發(fā)表于 2025-3-31 12:50:47 | 只看該作者
Brauer Groups and Witt Groups,s, proofs or sketches of proofs are provided only when they seemed not available in appropriately explicit form. The constructions are presented in the generality of commutative rings and then illustrated in the classical situations: over the real and complex numbers, and local and global fields.
58#
發(fā)表于 2025-3-31 14:32:08 | 只看該作者
The Arithmetic of Wq(R),tion of Ker . implies that Wq(R) ? Cl(R). ⊕ G, where C1(R) is the ideal class group of R and G is a free Abelian group of rank with r the number of real embeddings of the number field. An additional focus is the comparison of the number theory of Wq(R) with that of W(R) and the structure of the quotient W(R)/Wq(R).
59#
發(fā)表于 2025-3-31 20:30:02 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭山县| 南昌县| 孟津县| 沙洋县| 阜宁县| 阿巴嘎旗| 福建省| 读书| 平乐县| 台南市| 大丰市| 荔波县| 河北省| 肇东市| 迁西县| 巩留县| 怀柔区| 邢台市| 子洲县| 滨海县| 轮台县| 驻马店市| 蛟河市| 宾阳县| 缙云县| 六枝特区| 万荣县| 中方县| 治多县| 建平县| 宜城市| 永善县| 大同县| 通山县| 息烽县| 夏河县| 平舆县| 北安市| 张北县| 商城县| 南康市|