找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups; Alexander J. Hahn Textbook 1994 Springer-Verlag New York, Inc. 1994 Ari

[復制鏈接]
樓主: 生動
21#
發(fā)表于 2025-3-25 04:20:04 | 只看該作者
Alexander J. Hahne is proposed in which a firm can seekout an optimal location of a factory in a short period of time. By referring toa chaotic phenomenon, a firm sets a .locationprospective area. in a large geographical area a978-981-10-9182-7978-981-10-0524-4
22#
發(fā)表于 2025-3-25 07:44:19 | 只看該作者
e is proposed in which a firm can seekout an optimal location of a factory in a short period of time. By referring toa chaotic phenomenon, a firm sets a .locationprospective area. in a large geographical area a978-981-10-9182-7978-981-10-0524-4
23#
發(fā)表于 2025-3-25 14:24:47 | 只看該作者
24#
發(fā)表于 2025-3-25 19:50:39 | 只看該作者
https://doi.org/10.1007/978-1-4684-6311-8Arithmetic Forms; Clifford Algebras; K-theory; Quadratic Algebras; algebra; clifford algebra; lie algebra;
25#
發(fā)表于 2025-3-25 20:55:05 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:22 | 只看該作者
Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups978-1-4684-6311-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
27#
發(fā)表于 2025-3-26 05:14:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:11:20 | 只看該作者
29#
發(fā)表于 2025-3-26 12:48:05 | 只看該作者
Groups of Free Quadratic Algebras,cus on the properties of this group as well as those of its graded analogue. These will be important in Chapter 7 in the analysis of the Clifford algebra of a quadratic module. Certain “projective” versions of these groups will have crucial impact on the structure of the Brauer and Witt groups over R. See Chapters 13 and 14.
30#
發(fā)表于 2025-3-26 17:21:41 | 只看該作者
Bilinear and Quadratic Forms,rms, discriminant modules, and the group Dis(R). Proof by localization, i.e., by reduction to the case of a local ring, is introduced here. For the entire chapter, we fix a commutative ring R and a right R-module M.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宁海县| 盈江县| 龙里县| 随州市| 互助| 镇巴县| 富宁县| 罗江县| 文昌市| 建德市| 盈江县| 临汾市| 盖州市| 丁青县| 桃江县| 勃利县| 岑溪市| 台北市| 阿拉善左旗| 宝应县| 浦县| 兴仁县| 盐山县| 四子王旗| 栖霞市| 全椒县| 微山县| 宜昌市| 三门峡市| 莫力| 察哈| 从江县| 万载县| 濮阳县| 东莞市| 威信县| 瑞丽市| 长丰县| 丽水市| 和硕县| 门头沟区|