找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups; Alexander J. Hahn Textbook 1994 Springer-Verlag New York, Inc. 1994 Ari

[復制鏈接]
樓主: 生動
21#
發(fā)表于 2025-3-25 04:20:04 | 只看該作者
Alexander J. Hahne is proposed in which a firm can seekout an optimal location of a factory in a short period of time. By referring toa chaotic phenomenon, a firm sets a .locationprospective area. in a large geographical area a978-981-10-9182-7978-981-10-0524-4
22#
發(fā)表于 2025-3-25 07:44:19 | 只看該作者
e is proposed in which a firm can seekout an optimal location of a factory in a short period of time. By referring toa chaotic phenomenon, a firm sets a .locationprospective area. in a large geographical area a978-981-10-9182-7978-981-10-0524-4
23#
發(fā)表于 2025-3-25 14:24:47 | 只看該作者
24#
發(fā)表于 2025-3-25 19:50:39 | 只看該作者
https://doi.org/10.1007/978-1-4684-6311-8Arithmetic Forms; Clifford Algebras; K-theory; Quadratic Algebras; algebra; clifford algebra; lie algebra;
25#
發(fā)表于 2025-3-25 20:55:05 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:22 | 只看該作者
Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups978-1-4684-6311-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
27#
發(fā)表于 2025-3-26 05:14:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:11:20 | 只看該作者
29#
發(fā)表于 2025-3-26 12:48:05 | 只看該作者
Groups of Free Quadratic Algebras,cus on the properties of this group as well as those of its graded analogue. These will be important in Chapter 7 in the analysis of the Clifford algebra of a quadratic module. Certain “projective” versions of these groups will have crucial impact on the structure of the Brauer and Witt groups over R. See Chapters 13 and 14.
30#
發(fā)表于 2025-3-26 17:21:41 | 只看該作者
Bilinear and Quadratic Forms,rms, discriminant modules, and the group Dis(R). Proof by localization, i.e., by reduction to the case of a local ring, is introduced here. For the entire chapter, we fix a commutative ring R and a right R-module M.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
陆川县| 临猗县| 汉沽区| 沐川县| 阿克陶县| 河北省| 珲春市| 无锡市| 高台县| 木兰县| 伊春市| 许昌市| 晋宁县| 屏山县| 海城市| 北安市| 武乡县| 定襄县| 桂平市| 通城县| 海口市| 阳山县| 大渡口区| 紫金县| 衡山县| 广宁县| 栾川县| 永嘉县| 临湘市| 乐昌市| 繁峙县| 宽城| 普兰县| 南康市| 石泉县| 博爱县| 宁武县| 淮北市| 福建省| 饶阳县| 新野县|