找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: p-adic Hodge Theory; Bhargav Bhatt,Martin Olsson Conference proceedings 2020 The Editor(s) (if applicable) and The Author(s), under exclus

[復(fù)制鏈接]
查看: 55131|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:58:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱p-adic Hodge Theory
編輯Bhargav Bhatt,Martin Olsson
視頻videohttp://file.papertrans.cn/765/764603/764603.mp4
概述Focuses on a rapidly evolving field, emphasizing integrality questions.Contains articles that survey recent developments.Includes research articles, which advance the field
叢書名稱Simons Symposia
圖書封面Titlebook: p-adic Hodge Theory;  Bhargav Bhatt,Martin Olsson Conference proceedings 2020 The Editor(s) (if applicable) and The Author(s), under exclus
描述This proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory.
出版日期Conference proceedings 2020
關(guān)鍵詞cohomology; algebraic topology; rigid analytic geometry; Hochschild homology; Galois representations; loc
版次1
doihttps://doi.org/10.1007/978-3-030-43844-9
isbn_ebook978-3-030-43844-9Series ISSN 2365-9564 Series E-ISSN 2365-9572
issn_series 2365-9564
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱p-adic Hodge Theory影響因子(影響力)




書目名稱p-adic Hodge Theory影響因子(影響力)學(xué)科排名




書目名稱p-adic Hodge Theory網(wǎng)絡(luò)公開度




書目名稱p-adic Hodge Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱p-adic Hodge Theory被引頻次




書目名稱p-adic Hodge Theory被引頻次學(xué)科排名




書目名稱p-adic Hodge Theory年度引用




書目名稱p-adic Hodge Theory年度引用學(xué)科排名




書目名稱p-adic Hodge Theory讀者反饋




書目名稱p-adic Hodge Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:32 | 只看該作者
Notes on the ,-Cohomology of ,We present a detailed overview of the construction of the .-cohomology theory from the preprint ., joint with Bhatt and Scholze. We focus particularly on the .-adic analogue of the Cartier isomorphism via relative de Rham–Witt complexes.
板凳
發(fā)表于 2025-3-22 00:46:40 | 只看該作者
On the Cohomology of the Affine Space,We compute the .-adic geometric pro-étale cohomology of the rigid analytic affine space (in any dimension). This cohomology is non-zero, contrary to the étale cohomology, and can be described by means of differential forms.
地板
發(fā)表于 2025-3-22 06:28:29 | 只看該作者
5#
發(fā)表于 2025-3-22 12:02:12 | 只看該作者
The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
6#
發(fā)表于 2025-3-22 13:34:17 | 只看該作者
p-adic Hodge Theory978-3-030-43844-9Series ISSN 2365-9564 Series E-ISSN 2365-9572
7#
發(fā)表于 2025-3-22 18:50:50 | 只看該作者
,Arithmetic Chern–Simons Theory II,tra of rings of integers in algebraic number fields. In the first three sections, we define classical Chern–Simons actions on spaces of Galois representations. In the subsequent sections, we give formulas for computation in a small class of cases and point towards some arithmetic applications.
8#
發(fā)表于 2025-3-22 22:32:01 | 只看該作者
9#
發(fā)表于 2025-3-23 03:03:23 | 只看該作者
Kiran S. Kedlayainander, also etwa wie Perlen auf einer Schnur, angeordnet sind. Ein File ist somit eine Menge von Informationselementen mit eindeutig definiertem Anfang, definierter Reihenfolge und definiertem Ende. Unabh?ngig von der Definition eines Files ist die technische Realisierung, seine Gr??e und die Art
10#
發(fā)表于 2025-3-23 06:26:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉环县| 龙胜| 溧水县| 玉溪市| 大理市| 牙克石市| 通江县| 曲周县| 军事| 渭南市| 丰顺县| 从化市| 原阳县| 洛宁县| 修水县| 阿坝| 东方市| 漠河县| 达尔| 南澳县| 敦煌市| 通榆县| 合江县| 石狮市| 扎鲁特旗| 吉隆县| 辉南县| 资兴市| 托克托县| 梁山县| 靖安县| 登封市| 陆良县| 朝阳区| 锡林郭勒盟| 茌平县| 萍乡市| 垦利县| 江永县| 龙江县| 罗城|