找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: p-adic Hodge Theory; Bhargav Bhatt,Martin Olsson Conference proceedings 2020 The Editor(s) (if applicable) and The Author(s), under exclus

[復制鏈接]
查看: 55135|回復: 35
樓主
發(fā)表于 2025-3-21 18:58:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱p-adic Hodge Theory
編輯Bhargav Bhatt,Martin Olsson
視頻videohttp://file.papertrans.cn/765/764603/764603.mp4
概述Focuses on a rapidly evolving field, emphasizing integrality questions.Contains articles that survey recent developments.Includes research articles, which advance the field
叢書名稱Simons Symposia
圖書封面Titlebook: p-adic Hodge Theory;  Bhargav Bhatt,Martin Olsson Conference proceedings 2020 The Editor(s) (if applicable) and The Author(s), under exclus
描述This proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory.
出版日期Conference proceedings 2020
關(guān)鍵詞cohomology; algebraic topology; rigid analytic geometry; Hochschild homology; Galois representations; loc
版次1
doihttps://doi.org/10.1007/978-3-030-43844-9
isbn_ebook978-3-030-43844-9Series ISSN 2365-9564 Series E-ISSN 2365-9572
issn_series 2365-9564
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱p-adic Hodge Theory影響因子(影響力)




書目名稱p-adic Hodge Theory影響因子(影響力)學科排名




書目名稱p-adic Hodge Theory網(wǎng)絡(luò)公開度




書目名稱p-adic Hodge Theory網(wǎng)絡(luò)公開度學科排名




書目名稱p-adic Hodge Theory被引頻次




書目名稱p-adic Hodge Theory被引頻次學科排名




書目名稱p-adic Hodge Theory年度引用




書目名稱p-adic Hodge Theory年度引用學科排名




書目名稱p-adic Hodge Theory讀者反饋




書目名稱p-adic Hodge Theory讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:32 | 只看該作者
Notes on the ,-Cohomology of ,We present a detailed overview of the construction of the .-cohomology theory from the preprint ., joint with Bhatt and Scholze. We focus particularly on the .-adic analogue of the Cartier isomorphism via relative de Rham–Witt complexes.
板凳
發(fā)表于 2025-3-22 00:46:40 | 只看該作者
On the Cohomology of the Affine Space,We compute the .-adic geometric pro-étale cohomology of the rigid analytic affine space (in any dimension). This cohomology is non-zero, contrary to the étale cohomology, and can be described by means of differential forms.
地板
發(fā)表于 2025-3-22 06:28:29 | 只看該作者
5#
發(fā)表于 2025-3-22 12:02:12 | 只看該作者
The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
6#
發(fā)表于 2025-3-22 13:34:17 | 只看該作者
p-adic Hodge Theory978-3-030-43844-9Series ISSN 2365-9564 Series E-ISSN 2365-9572
7#
發(fā)表于 2025-3-22 18:50:50 | 只看該作者
,Arithmetic Chern–Simons Theory II,tra of rings of integers in algebraic number fields. In the first three sections, we define classical Chern–Simons actions on spaces of Galois representations. In the subsequent sections, we give formulas for computation in a small class of cases and point towards some arithmetic applications.
8#
發(fā)表于 2025-3-22 22:32:01 | 只看該作者
9#
發(fā)表于 2025-3-23 03:03:23 | 只看該作者
Kiran S. Kedlayainander, also etwa wie Perlen auf einer Schnur, angeordnet sind. Ein File ist somit eine Menge von Informationselementen mit eindeutig definiertem Anfang, definierter Reihenfolge und definiertem Ende. Unabh?ngig von der Definition eines Files ist die technische Realisierung, seine Gr??e und die Art
10#
發(fā)表于 2025-3-23 06:26:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
库伦旗| 邢台市| 丹江口市| 永新县| 九江市| 花垣县| 沾化县| 军事| 保亭| 德兴市| 长汀县| 江孜县| 桐梓县| 宝坻区| 泗水县| 体育| 三门峡市| 苗栗县| 光山县| 威远县| 葵青区| 嘉善县| 梁河县| 安岳县| 镇巴县| 化隆| 大城县| 青龙| 土默特左旗| 奉贤区| 玉林市| 修文县| 廉江市| 奉节县| 梨树县| 密山市| 门源| 红河县| 高台县| 黔江区| 青川县|