找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: p-adic Hodge Theory; Bhargav Bhatt,Martin Olsson Conference proceedings 2020 The Editor(s) (if applicable) and The Author(s), under exclus

[復制鏈接]
查看: 55135|回復: 35
樓主
發(fā)表于 2025-3-21 18:58:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱p-adic Hodge Theory
編輯Bhargav Bhatt,Martin Olsson
視頻videohttp://file.papertrans.cn/765/764603/764603.mp4
概述Focuses on a rapidly evolving field, emphasizing integrality questions.Contains articles that survey recent developments.Includes research articles, which advance the field
叢書名稱Simons Symposia
圖書封面Titlebook: p-adic Hodge Theory;  Bhargav Bhatt,Martin Olsson Conference proceedings 2020 The Editor(s) (if applicable) and The Author(s), under exclus
描述This proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory.
出版日期Conference proceedings 2020
關(guān)鍵詞cohomology; algebraic topology; rigid analytic geometry; Hochschild homology; Galois representations; loc
版次1
doihttps://doi.org/10.1007/978-3-030-43844-9
isbn_ebook978-3-030-43844-9Series ISSN 2365-9564 Series E-ISSN 2365-9572
issn_series 2365-9564
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱p-adic Hodge Theory影響因子(影響力)




書目名稱p-adic Hodge Theory影響因子(影響力)學科排名




書目名稱p-adic Hodge Theory網(wǎng)絡(luò)公開度




書目名稱p-adic Hodge Theory網(wǎng)絡(luò)公開度學科排名




書目名稱p-adic Hodge Theory被引頻次




書目名稱p-adic Hodge Theory被引頻次學科排名




書目名稱p-adic Hodge Theory年度引用




書目名稱p-adic Hodge Theory年度引用學科排名




書目名稱p-adic Hodge Theory讀者反饋




書目名稱p-adic Hodge Theory讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:32 | 只看該作者
Notes on the ,-Cohomology of ,We present a detailed overview of the construction of the .-cohomology theory from the preprint ., joint with Bhatt and Scholze. We focus particularly on the .-adic analogue of the Cartier isomorphism via relative de Rham–Witt complexes.
板凳
發(fā)表于 2025-3-22 00:46:40 | 只看該作者
On the Cohomology of the Affine Space,We compute the .-adic geometric pro-étale cohomology of the rigid analytic affine space (in any dimension). This cohomology is non-zero, contrary to the étale cohomology, and can be described by means of differential forms.
地板
發(fā)表于 2025-3-22 06:28:29 | 只看該作者
5#
發(fā)表于 2025-3-22 12:02:12 | 只看該作者
The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
6#
發(fā)表于 2025-3-22 13:34:17 | 只看該作者
p-adic Hodge Theory978-3-030-43844-9Series ISSN 2365-9564 Series E-ISSN 2365-9572
7#
發(fā)表于 2025-3-22 18:50:50 | 只看該作者
,Arithmetic Chern–Simons Theory II,tra of rings of integers in algebraic number fields. In the first three sections, we define classical Chern–Simons actions on spaces of Galois representations. In the subsequent sections, we give formulas for computation in a small class of cases and point towards some arithmetic applications.
8#
發(fā)表于 2025-3-22 22:32:01 | 只看該作者
9#
發(fā)表于 2025-3-23 03:03:23 | 只看該作者
Kiran S. Kedlayainander, also etwa wie Perlen auf einer Schnur, angeordnet sind. Ein File ist somit eine Menge von Informationselementen mit eindeutig definiertem Anfang, definierter Reihenfolge und definiertem Ende. Unabh?ngig von der Definition eines Files ist die technische Realisierung, seine Gr??e und die Art
10#
發(fā)表于 2025-3-23 06:26:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
仙居县| 怀安县| 长寿区| 赞皇县| 肇庆市| 陵水| 宜都市| 衡南县| 武宁县| 绍兴市| 西乌| 江油市| 来凤县| 府谷县| 武功县| 南溪县| 临海市| 黔南| 乐平市| 新营市| 弥渡县| 松溪县| 五峰| 民县| 武鸣县| 黑山县| 田林县| 贺州市| 神农架林区| 大冶市| 曲周县| 云阳县| 左贡县| 大关县| 浮梁县| 玉林市| 兴仁县| 新蔡县| 阳信县| 延边| 五家渠市|