找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: p-adic Banach Space Representations; With Applications to Dubravka Ban Book 2022 The Editor(s) (if applicable) and The Author(s), under exc

[復制鏈接]
查看: 6374|回復: 35
樓主
發(fā)表于 2025-3-21 16:22:31 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱p-adic Banach Space Representations
副標題With Applications to
編輯Dubravka Ban
視頻videohttp://file.papertrans.cn/765/764602/764602.mp4
概述Provides numerous exercises for graduate students and readers interested in hands-on learning.Offers a comprehensive introduction to the representation theory of p-adic groups on p-adic Banach spaces.
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: p-adic Banach Space Representations; With Applications to Dubravka Ban Book 2022 The Editor(s) (if applicable) and The Author(s), under exc
描述This book systematically develops the theory of continuous representations on?.p.-adic?Banach spaces. Its purpose is to lay the foundations of the representation theory of reductive .p.-adic groups on .p.-adic Banach spaces, explain the duality theory of Schneider and Teitelbaum, and demonstrate its applications to continuous principal series. Written to be accessible to graduate students, the book gives a comprehensive introduction to the necessary tools, including Iwasawa algebras, .p.-adic measures and?distributions, .p.-adic functional analysis, reductive groups, and smooth and algebraic representations. Part 1 culminates with the duality between Banach space representations and Iwasawa modules. This duality is applied in Part 2 for studying the intertwining operators and reducibility of the continuous principal series on .p.-adic Banach spaces..This monograph is intended to serve both as a reference book and as an introductory text for graduate students and researchers entering the area..
出版日期Book 2022
關(guān)鍵詞Admissible Representations; p-adic Banach Space Representations; Principal Series Representations; Schn
版次1
doihttps://doi.org/10.1007/978-3-031-22684-7
isbn_softcover978-3-031-22683-0
isbn_ebook978-3-031-22684-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱p-adic Banach Space Representations影響因子(影響力)




書目名稱p-adic Banach Space Representations影響因子(影響力)學科排名




書目名稱p-adic Banach Space Representations網(wǎng)絡公開度




書目名稱p-adic Banach Space Representations網(wǎng)絡公開度學科排名




書目名稱p-adic Banach Space Representations被引頻次




書目名稱p-adic Banach Space Representations被引頻次學科排名




書目名稱p-adic Banach Space Representations年度引用




書目名稱p-adic Banach Space Representations年度引用學科排名




書目名稱p-adic Banach Space Representations讀者反饋




書目名稱p-adic Banach Space Representations讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:04:03 | 只看該作者
0075-8434 resentation theory of p-adic groups on p-adic Banach spaces.This book systematically develops the theory of continuous representations on?.p.-adic?Banach spaces. Its purpose is to lay the foundations of the representation theory of reductive .p.-adic groups on .p.-adic Banach spaces, explain the dua
板凳
發(fā)表于 2025-3-22 03:09:52 | 只看該作者
地板
發(fā)表于 2025-3-22 07:01:33 | 只看該作者
5#
發(fā)表于 2025-3-22 11:11:19 | 只看該作者
6#
發(fā)表于 2025-3-22 14:29:39 | 只看該作者
7#
發(fā)表于 2025-3-22 17:06:26 | 只看該作者
978-3-031-22683-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
8#
發(fā)表于 2025-3-23 00:14:48 | 只看該作者
9#
發(fā)表于 2025-3-23 04:09:57 | 只看該作者
10#
發(fā)表于 2025-3-23 08:56:33 | 只看該作者
Iwasawa AlgebrasIn this chapter, we define the Iwasawa algebra of a profinite group and study its properties.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 17:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
三穗县| 西华县| 东丽区| 崇明县| 洛阳市| 黔南| 青龙| 酉阳| 秭归县| 丹阳市| 武功县| 平武县| 平湖市| 班玛县| 张家界市| 龙南县| 临汾市| 公安县| 广平县| 潮州市| 张家川| 新乡市| 镇巴县| 文安县| 富宁县| 朝阳区| 盱眙县| 垫江县| 花莲县| 高邮市| 修武县| 古丈县| 威信县| 吉木乃县| 安吉县| 阜宁县| 梧州市| 贵阳市| 乾安县| 北宁市| 恭城|