找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition; Haruo Yanai,Kei Takeuchi,Yoshio Takane Book 2011 Spri

[復(fù)制鏈接]
查看: 7101|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:49:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition
編輯Haruo Yanai,Kei Takeuchi,Yoshio Takane
視頻videohttp://file.papertrans.cn/761/760910/760910.mp4
概述The book will serve as a useful reference on projectors, generalized inverses, and SVD.Many of the concepts discussed in the book have been developed only recently.All three authors of the present boo
叢書名稱Statistics for Social and Behavioral Sciences
圖書封面Titlebook: Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition;  Haruo Yanai,Kei Takeuchi,Yoshio Takane Book 2011 Spri
描述.Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space..This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. .Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics,
出版日期Book 2011
關(guān)鍵詞Multivariate analysis; g-inverse matrices; linear transformations; projections; singular value decomposi
版次1
doihttps://doi.org/10.1007/978-1-4419-9887-3
isbn_softcover978-1-4614-2859-6
isbn_ebook978-1-4419-9887-3Series ISSN 2199-7357 Series E-ISSN 2199-7365
issn_series 2199-7357
copyrightSpringer Science+Business Media, LLC 2011
The information of publication is updating

書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition影響因子(影響力)




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition影響因子(影響力)學(xué)科排名




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition網(wǎng)絡(luò)公開(kāi)度




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition被引頻次




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition被引頻次學(xué)科排名




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition年度引用




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition年度引用學(xué)科排名




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition讀者反饋




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:23:49 | 只看該作者
第160910主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:25:59 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:50:06 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:41:19 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:55:20 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:22:04 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:15:51 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:05:23 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:43:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新绛县| 江永县| 桃园市| 鹿泉市| 关岭| 旅游| 长寿区| 瓮安县| 黄龙县| 商城县| 新乐市| 江西省| 灌云县| 岐山县| 金坛市| 剑川县| 洪泽县| 闽清县| 沁源县| 江陵县| 千阳县| 剑川县| 海南省| 大姚县| 乡宁县| 固镇县| 天长市| 阿巴嘎旗| 繁峙县| 讷河市| 囊谦县| 拉萨市| 莲花县| 新绛县| 巴青县| 临漳县| 定日县| 双城市| 秦安县| 资源县| 夏津县|