找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition; Haruo Yanai,Kei Takeuchi,Yoshio Takane Book 2011 Spri

[復(fù)制鏈接]
查看: 7106|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:49:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition
編輯Haruo Yanai,Kei Takeuchi,Yoshio Takane
視頻videohttp://file.papertrans.cn/761/760910/760910.mp4
概述The book will serve as a useful reference on projectors, generalized inverses, and SVD.Many of the concepts discussed in the book have been developed only recently.All three authors of the present boo
叢書名稱Statistics for Social and Behavioral Sciences
圖書封面Titlebook: Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition;  Haruo Yanai,Kei Takeuchi,Yoshio Takane Book 2011 Spri
描述.Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space..This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. .Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics,
出版日期Book 2011
關(guān)鍵詞Multivariate analysis; g-inverse matrices; linear transformations; projections; singular value decomposi
版次1
doihttps://doi.org/10.1007/978-1-4419-9887-3
isbn_softcover978-1-4614-2859-6
isbn_ebook978-1-4419-9887-3Series ISSN 2199-7357 Series E-ISSN 2199-7365
issn_series 2199-7357
copyrightSpringer Science+Business Media, LLC 2011
The information of publication is updating

書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition影響因子(影響力)




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition影響因子(影響力)學(xué)科排名




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition網(wǎng)絡(luò)公開度




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition被引頻次




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition被引頻次學(xué)科排名




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition年度引用




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition年度引用學(xué)科排名




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition讀者反饋




書目名稱Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:23:49 | 只看該作者
第160910主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:25:59 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:50:06 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:41:19 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:55:20 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:22:04 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:15:51 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:05:23 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:43:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 01:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林甸县| 化德县| 文昌市| 花莲县| 平陆县| 渝中区| 高陵县| 隆安县| 石柱| 偃师市| 泸水县| 延安市| 衡水市| 葵青区| 南宫市| 保山市| 理塘县| 麻城市| 增城市| 星子县| 姜堰市| 大同市| 普定县| 明溪县| 泰州市| 巴楚县| 夹江县| 虹口区| 南和县| 横峰县| 隆化县| 紫金县| 乐安县| 灵台县| 广饶县| 开平市| 安宁市| 大英县| 庆城县| 秦安县| 喀什市|