找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Positive Solutions to Indefinite Problems; A Topological Approa Guglielmo Feltrin Book 2018 Springer Nature Switzerland AG 2018 indefinite

[復制鏈接]
查看: 20618|回復: 35
樓主
發(fā)表于 2025-3-21 17:07:59 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Positive Solutions to Indefinite Problems
副標題A Topological Approa
編輯Guglielmo Feltrin
視頻videohttp://file.papertrans.cn/752/751892/751892.mp4
概述Deals with new, challenging problems in nonlinear analysis and solves several open problems and questions.Gives a good overview of existing methods and presents new ideas and results as well.Proposes
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Positive Solutions to Indefinite Problems; A Topological Approa Guglielmo Feltrin Book 2018 Springer Nature Switzerland AG 2018 indefinite
描述This book is devoted to the study of positive solutions to indefinite problems. The monograph intelligibly provides an extensive overview of topological methods and introduces new ideas and results. Sticking to the one-dimensional setting, the author shows that compelling and substantial research can be obtained and presented in a penetrable way..In particular, the book focuses on second order nonlinear differential equations. It analyzes the Dirichlet, Neumann and periodic boundary value problems associated with the equation and provides existence, nonexistence and multiplicity results for positive solutions. The author proposes a new approach based on topological degree theory that allows him to answer some open questions and solve a conjecture about the dependence of the number of positive solutions on the nodal behaviour of the nonlinear term of the equation. The new technique developed in the book gives, as a byproduct, infinitely many subharmonic solutions and globally defined positive solutions with chaotic behaviour. Furthermore, some future directions for research, open questions and interesting, unexplored topics of investigation are proposed..
出版日期Book 2018
關(guān)鍵詞indefinite equations; superlinear problems; super-sublinear problems; existence results; multiplicity re
版次1
doihttps://doi.org/10.1007/978-3-319-94238-4
isbn_softcover978-3-319-94237-7
isbn_ebook978-3-319-94238-4Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Positive Solutions to Indefinite Problems影響因子(影響力)




書目名稱Positive Solutions to Indefinite Problems影響因子(影響力)學科排名




書目名稱Positive Solutions to Indefinite Problems網(wǎng)絡公開度




書目名稱Positive Solutions to Indefinite Problems網(wǎng)絡公開度學科排名




書目名稱Positive Solutions to Indefinite Problems被引頻次




書目名稱Positive Solutions to Indefinite Problems被引頻次學科排名




書目名稱Positive Solutions to Indefinite Problems年度引用




書目名稱Positive Solutions to Indefinite Problems年度引用學科排名




書目名稱Positive Solutions to Indefinite Problems讀者反饋




書目名稱Positive Solutions to Indefinite Problems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:11 | 只看該作者
第151892主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:55:59 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:40:27 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:00:45 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:57:31 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:20:52 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:29:17 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:19:32 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:45:34 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 08:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
高清| 达拉特旗| 娄底市| 柳林县| 农安县| 高雄县| 二连浩特市| 延长县| 蒙阴县| 广宗县| 大埔区| 祁门县| 游戏| 广州市| 津南区| 青岛市| 丹巴县| 盘锦市| 绿春县| 浙江省| 金华市| 文昌市| 西丰县| 凭祥市| 巧家县| 长寿区| 乐山市| 抚松县| 抚顺市| 天全县| 九寨沟县| 河西区| 时尚| 太仆寺旗| 利津县| 辽源市| 吴川市| 驻马店市| 曲松县| 甘孜县| 洪江市|