找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Positive Solutions to Indefinite Problems; A Topological Approa Guglielmo Feltrin Book 2018 Springer Nature Switzerland AG 2018 indefinite

[復(fù)制鏈接]
查看: 20625|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:07:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Positive Solutions to Indefinite Problems
副標(biāo)題A Topological Approa
編輯Guglielmo Feltrin
視頻videohttp://file.papertrans.cn/752/751892/751892.mp4
概述Deals with new, challenging problems in nonlinear analysis and solves several open problems and questions.Gives a good overview of existing methods and presents new ideas and results as well.Proposes
叢書(shū)名稱Frontiers in Mathematics
圖書(shū)封面Titlebook: Positive Solutions to Indefinite Problems; A Topological Approa Guglielmo Feltrin Book 2018 Springer Nature Switzerland AG 2018 indefinite
描述This book is devoted to the study of positive solutions to indefinite problems. The monograph intelligibly provides an extensive overview of topological methods and introduces new ideas and results. Sticking to the one-dimensional setting, the author shows that compelling and substantial research can be obtained and presented in a penetrable way..In particular, the book focuses on second order nonlinear differential equations. It analyzes the Dirichlet, Neumann and periodic boundary value problems associated with the equation and provides existence, nonexistence and multiplicity results for positive solutions. The author proposes a new approach based on topological degree theory that allows him to answer some open questions and solve a conjecture about the dependence of the number of positive solutions on the nodal behaviour of the nonlinear term of the equation. The new technique developed in the book gives, as a byproduct, infinitely many subharmonic solutions and globally defined positive solutions with chaotic behaviour. Furthermore, some future directions for research, open questions and interesting, unexplored topics of investigation are proposed..
出版日期Book 2018
關(guān)鍵詞indefinite equations; superlinear problems; super-sublinear problems; existence results; multiplicity re
版次1
doihttps://doi.org/10.1007/978-3-319-94238-4
isbn_softcover978-3-319-94237-7
isbn_ebook978-3-319-94238-4Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書(shū)目名稱Positive Solutions to Indefinite Problems影響因子(影響力)




書(shū)目名稱Positive Solutions to Indefinite Problems影響因子(影響力)學(xué)科排名




書(shū)目名稱Positive Solutions to Indefinite Problems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Positive Solutions to Indefinite Problems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Positive Solutions to Indefinite Problems被引頻次




書(shū)目名稱Positive Solutions to Indefinite Problems被引頻次學(xué)科排名




書(shū)目名稱Positive Solutions to Indefinite Problems年度引用




書(shū)目名稱Positive Solutions to Indefinite Problems年度引用學(xué)科排名




書(shū)目名稱Positive Solutions to Indefinite Problems讀者反饋




書(shū)目名稱Positive Solutions to Indefinite Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:11 | 只看該作者
第151892主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:55:59 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:40:27 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:00:45 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:57:31 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:20:52 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:29:17 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:19:32 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:45:34 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 11:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奈曼旗| 布尔津县| 铅山县| 安乡县| 胶南市| 天津市| 吴忠市| 乌兰察布市| 安岳县| 南漳县| 灵川县| 城口县| 应用必备| 岳阳县| 大英县| 灵寿县| 张家港市| 河津市| 湖州市| 许昌县| 华阴市| 武强县| 太原市| 山丹县| 南岸区| 西昌市| 贵港市| 化州市| 泗阳县| 长顺县| 尼木县| 安西县| 洞头县| 区。| 永州市| 乌审旗| 东明县| 四子王旗| 京山县| 新和县| 安丘市|