找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials: Current Trends and Applications; Proceedings of the 7 Francisco Marcellán,Edmundo J. Huertas Conference proceedings

[復(fù)制鏈接]
樓主: BID
31#
發(fā)表于 2025-3-26 20:59:46 | 只看該作者
Infinite Matrices in the Theory of Orthogonal Polynomials,rices of generalized Hessenberg type to represent polynomial sequences and linear maps on the complex vector space of all polynomials. We show how the matrices are used to characterize and to construct several sets of orthogonal polynomials with respect to some linear functional on the space of poly
32#
發(fā)表于 2025-3-27 01:45:13 | 只看該作者
33#
發(fā)表于 2025-3-27 07:48:38 | 只看該作者
,Riemann–Hilbert Problem and Matrix Biorthogonal Polynomials,f a Sylvester type Pearson equation with coefficients first order matrix polynomials. We will explore this discussion, present some achievements and consider some new examples of weights for matrix biorthogonal polynomials.
34#
發(fā)表于 2025-3-27 10:20:37 | 只看該作者
Conference proceedings 2021 Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganés, Spain, from July 3 to July 6, 2018..These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal
35#
發(fā)表于 2025-3-27 14:56:10 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:54 | 只看該作者
37#
發(fā)表于 2025-3-27 22:08:23 | 只看該作者
Revisiting Biorthogonal Polynomials: An , Factorization Discussion,x formula are given. The classical orthogonal polynomial of Hermite, Laguerre and Jacobi type are discussed and characterized within this scheme. Finally, it is shown who this approach is instrumental in the derivation of Christoffel formulas for general Christoffel and Geronimus perturbations of the bilinear forms.
38#
發(fā)表于 2025-3-28 03:01:01 | 只看該作者
39#
發(fā)表于 2025-3-28 08:41:00 | 只看該作者
40#
發(fā)表于 2025-3-28 12:58:13 | 只看該作者
Amílcar Branquinho,Ana Foulquié-Moreno,Manuel Ma?as-Baenaols. serves as a valuable resource for researchers both in academia and in the biosciences industry who are engaged in the search for a better understanding of threatening virus-hosts interactions, virus detection, their characterization, and ultimately their taming and control..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保德县| 缙云县| 巨鹿县| 崇信县| 墨竹工卡县| 慈溪市| 台前县| 册亨县| 酒泉市| 朔州市| 竹溪县| 环江| 广安市| 安龙县| 远安县| 庆安县| 宜都市| 怀来县| 印江| 宁夏| 博乐市| 新源县| 德格县| 招远市| 友谊县| 根河市| 靖边县| 邢台市| 巴中市| 定兴县| 郓城县| 孟连| 衡山县| 寿阳县| 峡江县| 轮台县| 保定市| 巴彦县| 华容县| 瑞丽市| 深泽县|