找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials: Current Trends and Applications; Proceedings of the 7 Francisco Marcellán,Edmundo J. Huertas Conference proceedings

[復(fù)制鏈接]
樓主: BID
31#
發(fā)表于 2025-3-26 20:59:46 | 只看該作者
Infinite Matrices in the Theory of Orthogonal Polynomials,rices of generalized Hessenberg type to represent polynomial sequences and linear maps on the complex vector space of all polynomials. We show how the matrices are used to characterize and to construct several sets of orthogonal polynomials with respect to some linear functional on the space of poly
32#
發(fā)表于 2025-3-27 01:45:13 | 只看該作者
33#
發(fā)表于 2025-3-27 07:48:38 | 只看該作者
,Riemann–Hilbert Problem and Matrix Biorthogonal Polynomials,f a Sylvester type Pearson equation with coefficients first order matrix polynomials. We will explore this discussion, present some achievements and consider some new examples of weights for matrix biorthogonal polynomials.
34#
發(fā)表于 2025-3-27 10:20:37 | 只看該作者
Conference proceedings 2021 Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganés, Spain, from July 3 to July 6, 2018..These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal
35#
發(fā)表于 2025-3-27 14:56:10 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:54 | 只看該作者
37#
發(fā)表于 2025-3-27 22:08:23 | 只看該作者
Revisiting Biorthogonal Polynomials: An , Factorization Discussion,x formula are given. The classical orthogonal polynomial of Hermite, Laguerre and Jacobi type are discussed and characterized within this scheme. Finally, it is shown who this approach is instrumental in the derivation of Christoffel formulas for general Christoffel and Geronimus perturbations of the bilinear forms.
38#
發(fā)表于 2025-3-28 03:01:01 | 只看該作者
39#
發(fā)表于 2025-3-28 08:41:00 | 只看該作者
40#
發(fā)表于 2025-3-28 12:58:13 | 只看該作者
Amílcar Branquinho,Ana Foulquié-Moreno,Manuel Ma?as-Baenaols. serves as a valuable resource for researchers both in academia and in the biosciences industry who are engaged in the search for a better understanding of threatening virus-hosts interactions, virus detection, their characterization, and ultimately their taming and control..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东辽县| 巴东县| 苍山县| 曲阜市| 栾城县| 英超| 新乡县| 杭锦后旗| 柳林县| 罗平县| 江津市| 封丘县| 安康市| 屏南县| 社会| 古田县| 郁南县| 台湾省| 永靖县| 临武县| 望都县| 太仓市| 扎囊县| 山阴县| 化州市| 蛟河市| 苏尼特右旗| 延长县| 常州市| 昌乐县| 金塔县| 绥化市| 普格县| 通化市| 弋阳县| 八宿县| 阿合奇县| 衡东县| 泸定县| 华坪县| 加查县|