找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials: Current Trends and Applications; Proceedings of the 7 Francisco Marcellán,Edmundo J. Huertas Conference proceedings

[復制鏈接]
查看: 41483|回復: 46
樓主
發(fā)表于 2025-3-21 18:59:16 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Orthogonal Polynomials: Current Trends and Applications
副標題Proceedings of the 7
編輯Francisco Marcellán,Edmundo J. Huertas
視頻videohttp://file.papertrans.cn/705/704712/704712.mp4
概述A state of the art compilation of top research articles in orthogonal polynomials theory.Comprehensive guide for young researchers in applied mathematics.Fresh list of collaboration topics in applied
叢書名稱SEMA SIMAI Springer Series
圖書封面Titlebook: Orthogonal Polynomials: Current Trends and Applications; Proceedings of the 7 Francisco Marcellán,Edmundo J. Huertas Conference proceedings
描述The present volume contains the Proceedings of the Seventh Iberoamerican Workshop in Orthogonal Polynomials and Applications (EIBPOA, which stands for Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganés, Spain, from July 3 to July 6, 2018..These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal polynomials and their applications among graduate students as well as young researchers from Latin America, Spain and Portugal.?.The presentation of the state of the art as well as some recent trends constitute the aim of the lectures delivered in the EIBPOA by worldwide recognized researchers in the? above fields..In this volume, several topics on the theory of polynomials orthogonal with respect to different inner products are analyzed, both from an introductory point of view for a wide spectrum ofreaders without an expertise in the area, as well as the emphasis on their applications in? topics as integrable systems, random matrices, numerical methods in differential and partial differential equations, coding theory, and signal theory, am
出版日期Conference proceedings 2021
關鍵詞Orthogonal Polynomials; Approximation Theory (Rational Approximation); Special Functions; Applied Mathe
版次1
doihttps://doi.org/10.1007/978-3-030-56190-1
isbn_ebook978-3-030-56190-1Series ISSN 2199-3041 Series E-ISSN 2199-305X
issn_series 2199-3041
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Orthogonal Polynomials: Current Trends and Applications影響因子(影響力)




書目名稱Orthogonal Polynomials: Current Trends and Applications影響因子(影響力)學科排名




書目名稱Orthogonal Polynomials: Current Trends and Applications網(wǎng)絡公開度




書目名稱Orthogonal Polynomials: Current Trends and Applications網(wǎng)絡公開度學科排名




書目名稱Orthogonal Polynomials: Current Trends and Applications被引頻次




書目名稱Orthogonal Polynomials: Current Trends and Applications被引頻次學科排名




書目名稱Orthogonal Polynomials: Current Trends and Applications年度引用




書目名稱Orthogonal Polynomials: Current Trends and Applications年度引用學科排名




書目名稱Orthogonal Polynomials: Current Trends and Applications讀者反饋




書目名稱Orthogonal Polynomials: Current Trends and Applications讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:19:04 | 只看該作者
Convergent Non Complete Interpolatory Quadrature Rules,We find a family of convergent schemes of nodes for non-complete interpolatory quadrature rules.
板凳
發(fā)表于 2025-3-22 02:36:13 | 只看該作者
地板
發(fā)表于 2025-3-22 07:14:19 | 只看該作者
https://doi.org/10.1007/978-3-030-56190-1Orthogonal Polynomials; Approximation Theory (Rational Approximation); Special Functions; Applied Mathe
5#
發(fā)表于 2025-3-22 10:44:31 | 只看該作者
6#
發(fā)表于 2025-3-22 14:19:28 | 只看該作者
7#
發(fā)表于 2025-3-22 20:33:58 | 只看該作者
,An Introduction to Multiple Orthogonal Polynomials and Hermite-Padé Approximation,n as Nikishin systems. For type I and type II multiple orthogonal polynomials with respect to such systems of measures, we describe some of their most relevant properties regarding location and distribution of zeros as well as their weak and ratio asymptotic behavior.
8#
發(fā)表于 2025-3-22 23:31:18 | 只看該作者
9#
發(fā)表于 2025-3-23 03:04:32 | 只看該作者
The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
10#
發(fā)表于 2025-3-23 05:52:57 | 只看該作者
Orthogonal Polynomials: Current Trends and Applications978-3-030-56190-1Series ISSN 2199-3041 Series E-ISSN 2199-305X
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁阳县| 长子县| 南安市| 和硕县| 瓦房店市| 松桃| 长海县| 井冈山市| 南京市| 海宁市| 昌邑市| 收藏| 扬州市| 南昌市| 凭祥市| 礼泉县| 平安县| 宜章县| 措勤县| 东安县| 偏关县| 金华市| 察雅县| 襄城县| 金山区| 呈贡县| 宣汉县| 济南市| 江达县| 岚皋县| 张家港市| 长葛市| 共和县| 梁河县| 扎赉特旗| 台江县| 繁峙县| 平山县| 南城县| 平顶山市| 大城县|