找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials for Exponential Weights; Eli Levin,Doron S. Lubinsky Textbook 2001 Springer-Verlag New York, Inc. 2001 Smooth funct

[復(fù)制鏈接]
樓主: energy
21#
發(fā)表于 2025-3-25 03:39:51 | 只看該作者
22#
發(fā)表于 2025-3-25 08:51:33 | 只看該作者
Restricted Range Inequalities,We have already seen that for . convex, and not identically vanishing polynomials . of degree ≦ ., there holds the Mhaskar-Saff inequality:
23#
發(fā)表于 2025-3-25 12:31:40 | 只看該作者
Estimates for Measure and Potential,In this chapter, we obtain upper and lower bounds for the equilibrium density σ.(.) and for the associated potential ... The lower bounds are easy to obtain, and minimal assumptions on . are needed:
24#
發(fā)表于 2025-3-25 19:09:09 | 只看該作者
,Smoothness of σ,,The smoothness of σ. plays a role in discretising the potential to obtain weighted polynomial approximations. In this chapter, we establish various levels of smoothness of σ. under corresponding conditions on ..
25#
發(fā)表于 2025-3-25 23:26:01 | 只看該作者
Christoffel Functions,Christoffel functions are crucially important in analysis of orthogonal poly-nomials and weighted approximation theory [146]. In this chapter we shall estimate generalized and classical .. Christoffel functions for 0 < .≤∞ using the polynomials constructed in Chapter 7. We shall also establish asymptotics for classical Christoffel functions.
26#
發(fā)表于 2025-3-26 02:32:37 | 只看該作者
Markov-Bernstein and Nikolskii Inequalities,In this chapter, we shall prove Markov-Bernstein inequalities and Nikolskii inequalities. We begin with the former. We shall make substantial use of the function ?. defined by (9.18) and (9.19).
27#
發(fā)表于 2025-3-26 05:25:12 | 只看該作者
Zeros of Orthogonal Polynomials,Recall that given a weight .. on the finite or infinite interval ., its .th orthonormal polynomial .. (..,.) has zeros ., where
28#
發(fā)表于 2025-3-26 12:03:46 | 只看該作者
Bounds on Orthogonal Polynomials,Perhaps the most significant result of this work is the following uniform bound on the orthogonal polynomials throughout the interval of orthogonality:
29#
發(fā)表于 2025-3-26 16:09:36 | 只看該作者
Asymptotics of Extremal Polynomials,In this chapter, we establish mean asymptotics on the real line for extremal polynomials, and also their asymptotics in the plane. Our approach follows very closely that in [101] and also [114].
30#
發(fā)表于 2025-3-26 18:48:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛沁县| 北京市| 开原市| 辽阳县| 清流县| 鞍山市| 石泉县| 涞源县| 衡阳市| 涪陵区| 仪征市| 龙门县| 辽宁省| 清涧县| 安新县| 山阴县| 淳安县| 枝江市| 红河县| 南投市| 金溪县| 尉氏县| 安阳市| 含山县| 霍山县| 吕梁市| 新闻| 楚雄市| 简阳市| 合山市| 弋阳县| 怀柔区| 双桥区| 北碚区| 沧源| 彭山县| 方城县| 拉萨市| 平潭县| 芷江| 南雄市|