找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials for Exponential Weights; Eli Levin,Doron S. Lubinsky Textbook 2001 Springer-Verlag New York, Inc. 2001 Smooth funct

[復制鏈接]
查看: 15693|回復: 56
樓主
發(fā)表于 2025-3-21 18:38:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Orthogonal Polynomials for Exponential Weights
編輯Eli Levin,Doron S. Lubinsky
視頻videohttp://file.papertrans.cn/705/704711/704711.mp4
叢書名稱CMS Books in Mathematics
圖書封面Titlebook: Orthogonal Polynomials for Exponential Weights;  Eli Levin,Doron S. Lubinsky Textbook 2001 Springer-Verlag New York, Inc. 2001 Smooth funct
描述The analysis of orthogonal polynomials associated with general weights was a major theme in classical analysis in the twentieth century, and undoubtedly will continue to grow in importance in the future..In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0; likewise the weight need not be even. The authors establish bounds and asymptotics for orthonormal and extremal polynomials, and their associated Christoffel functions. They deduce bounds on zeros of extremal and orthogonal polynomials, and also establish Markov- Bernstein and Nikolskii inequalities..The authors have collaborated actively since 1982 on various topics, and have published many joint papers, as well as a Memoir of the American Mathematical Society. The latter deals with a special case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials.
出版日期Textbook 2001
關鍵詞Smooth function; approximation theory; extrema; orthogonal polynomials; potential theory; combinatorics
版次1
doihttps://doi.org/10.1007/978-1-4613-0201-8
isbn_softcover978-1-4612-6563-4
isbn_ebook978-1-4613-0201-8Series ISSN 1613-5237 Series E-ISSN 2197-4152
issn_series 1613-5237
copyrightSpringer-Verlag New York, Inc. 2001
The information of publication is updating

書目名稱Orthogonal Polynomials for Exponential Weights影響因子(影響力)




書目名稱Orthogonal Polynomials for Exponential Weights影響因子(影響力)學科排名




書目名稱Orthogonal Polynomials for Exponential Weights網(wǎng)絡公開度




書目名稱Orthogonal Polynomials for Exponential Weights網(wǎng)絡公開度學科排名




書目名稱Orthogonal Polynomials for Exponential Weights被引頻次




書目名稱Orthogonal Polynomials for Exponential Weights被引頻次學科排名




書目名稱Orthogonal Polynomials for Exponential Weights年度引用




書目名稱Orthogonal Polynomials for Exponential Weights年度引用學科排名




書目名稱Orthogonal Polynomials for Exponential Weights讀者反饋




書目名稱Orthogonal Polynomials for Exponential Weights讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:27:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:27:59 | 只看該作者
1613-5237 undoubtedly will continue to grow in importance in the future..In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0; likewise the weight need not be even.
地板
發(fā)表于 2025-3-22 04:59:25 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:30 | 只看該作者
Asymptotics of Extremal Errors,r result in compact form, we need some notation. For a non-negative . : [?1,1] → ?, let.denote the . of .. Recall also that.where .. is the linear map of [.., a.] onto [?1,1] and .. is its inverse. Finally, let
6#
發(fā)表于 2025-3-22 14:51:32 | 只看該作者
Further Bounds and Applications,of Lagrange interpolation, and spacing of zeros of orthogonal polynomials. We shall often need more than .∈.(.1/2). Recall from Chapter 1 that we defined .∈.(.1/2+) if both .∈.(.1/2) and for each .>1, there exists .>0 and .. such that
7#
發(fā)表于 2025-3-22 17:55:04 | 只看該作者
8#
發(fā)表于 2025-3-22 23:02:11 | 只看該作者
Eli Levin,Doron S. Lubinskychisch . denken. Doch hei?t dieses Verb ursprünglich nicht .sagen. im Sinne von ?.sagen, die Zukunft voraussagen“, es ist, was überraschen mag, überhaupt erst in nachchristlicher Zeit gelegentlich belegt., gibt also für die Erkl?rung von . direkt nichts her. Die Pr?position . bedeutet in alten Verbi
9#
發(fā)表于 2025-3-23 02:38:57 | 只看該作者
Textbook 2001 case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials.
10#
發(fā)表于 2025-3-23 07:33:05 | 只看該作者
1613-5237 a special case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials.978-1-4612-6563-4978-1-4613-0201-8Series ISSN 1613-5237 Series E-ISSN 2197-4152
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
通渭县| 惠州市| 民县| 白朗县| 兰坪| 陆川县| 长海县| 方城县| 米林县| 肃宁县| 邢台市| 长春市| 江源县| 循化| 白河县| 河北区| 潼南县| 德阳市| 龙陵县| 武穴市| 烟台市| 青神县| 青阳县| 城步| 天门市| 绥芬河市| 辽阳市| 平利县| 浦北县| 清徐县| 和林格尔县| 兴化市| 阿尔山市| 茌平县| 永福县| 沙湾县| 绍兴市| 茂名市| 双鸭山市| 驻马店市| 西贡区|