找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials; Theory and Practice Paul Nevai Book 1990 Kluwer Academic Publishers 1990 Approximation.Jacobi.boundary element meth

[復制鏈接]
樓主: 強烈興趣
51#
發(fā)表于 2025-3-30 08:50:42 | 只看該作者
52#
發(fā)表于 2025-3-30 15:32:43 | 只看該作者
53#
發(fā)表于 2025-3-30 20:06:58 | 只看該作者
54#
發(fā)表于 2025-3-30 23:49:52 | 只看該作者
An Introduction to Group Representations and Orthogonal Polynomials,ions for the rotation groups in Euclidean space (ultraspherical polynomials), and the matrix elements of .(2) (Jacobi polynomials) are discussed. A general theory for finite groups acting on graphs, giving a finite set of discrete orthogonal polynomials is given. Explicit examples include graphs giving the Krawtchouk and Hahn polynomials.
55#
發(fā)表于 2025-3-31 04:39:30 | 只看該作者
56#
發(fā)表于 2025-3-31 06:02:24 | 只看該作者
Orthogonal Polynomials978-94-009-0501-6Series ISSN 1389-2185
57#
發(fā)表于 2025-3-31 09:48:28 | 只看該作者
Characterization Theorems for Orthogonal Polynomials,We survey in this paper characterization theorems dealing with polynomial sets which are orthogonal on the real line.
58#
發(fā)表于 2025-3-31 14:32:53 | 只看該作者
59#
發(fā)表于 2025-3-31 20:53:37 | 只看該作者
Orthogonal Polynomials and Functional Analysis,This paper studies the measure of orthogonality for a system of polynomials defined by a three term recursion formula, using the techniques of operator theory and functional analysis. Spectral properties of self-adjoint operators and compact operators, perturbation theorems, and commutator equations are used in the development of the ideas.
60#
發(fā)表于 2025-4-1 00:16:10 | 只看該作者
Orthogonal Polynomials Associated with Root Systems,The orthogonal polynomials that are the subject of these lectures are Laurent polynomials in several variables. They depend rationally on two parameters q and t, and there is a family of them attached to each root system R. For particular values of the parameters q and t, these polynomials reduce to objects familiar in representation theory:
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 07:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安吉县| 乐清市| 仙居县| 同德县| 乐陵市| 南昌市| 莱阳市| 子洲县| 萍乡市| 晴隆县| 宝山区| 越西县| 高清| 五峰| 吉木乃县| 兰考县| 香格里拉县| 祁连县| 曲水县| 延庆县| 永兴县| 洛扎县| 南木林县| 奉贤区| 山西省| 镇平县| 剑河县| 横山县| 淮阳县| 东源县| 巫溪县| 儋州市| 阳朔县| 桂林市| 桐城市| 高淳县| 志丹县| 通海县| 贵南县| 桂阳县| 齐齐哈尔市|