找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials; Theory and Practice Paul Nevai Book 1990 Kluwer Academic Publishers 1990 Approximation.Jacobi.boundary element meth

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:03:42 | 只看該作者
Orthogonal Polynomials in Coding Theory and Algebraic Combinatorics,eory, various theories of group representation, and so on. The main topics discussed in this paper include the following: The connection between orthogonal polynomials and . -polynomial (or . -polynomial) association schemes. The classification problem for . - and . -polynomial association schemes a
22#
發(fā)表于 2025-3-25 08:52:10 | 只看該作者
,Orthogonal Polynomials, Padé Approximations and Julia Sets,m, the subsitution of a polynomial into itself, into a linear one, the three terms recursive relation fulfilled by any orthogonal polynomial system. To those iterates of a polynomial is associated in a natural manner an Hilbert space operator, the Jacobi matrix . generated by the three term recursiv
23#
發(fā)表于 2025-3-25 13:30:49 | 只看該作者
On the Role of Orthogonal Polynomials on the Unit Circle in Digital Signal Processing Applications,d Levinson algorithm, which is commonly used in digital signal processing (DSP) applications to solve various least-squares problems. A computationally more efficient substitute for the Levinson algorithm, termed the split Levinson algorithm, has recently been proposed in the DSP literature. In the
24#
發(fā)表于 2025-3-25 18:07:10 | 只看該作者
A Survey on the Theory of Orthogonal System and Some Open Problems, conclude that these results have been overlooked by the overwhelming majority of mathematicians working in general orthogonal systems and, in particular, in orthogonal polynomials. We did not include in this report a number of the author’s results on the theory of bi-orthogonal systems, which are f
25#
發(fā)表于 2025-3-25 23:39:14 | 只看該作者
26#
發(fā)表于 2025-3-26 01:56:50 | 只看該作者
27#
發(fā)表于 2025-3-26 04:33:12 | 只看該作者
28#
發(fā)表于 2025-3-26 11:25:03 | 只看該作者
Birth and Death Processes and Orthogonal Polynomials,nd spectra of birth and death processes. Birth and death processes with linear birth and death rates are studied in some detail. We also mention some results concerning birth and death processes whose transition rates are rational functions.
29#
發(fā)表于 2025-3-26 14:06:46 | 只看該作者
Orthogonal Polynomials in Connection with Quantum Groups, on Hopf algebras and quantum groups. The emphasis in the rest of the paper is on the SU(2) quantum group. An interpretation of little q-Jacobi polynomials as matrix elements of its irreducible representations is presented. In the last two sections new results by the author on interpretations of Ask
30#
發(fā)表于 2025-3-26 17:22:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱阳市| 罗源县| 开原市| 永福县| 绥中县| 长乐市| 凤凰县| 晋江市| 中牟县| 德阳市| 师宗县| 汉源县| 阿克陶县| 邢台县| 基隆市| 石屏县| 顺昌县| 丰县| 历史| 汉源县| 驻马店市| 静安区| 东城区| 张北县| 津市市| 北安市| 遂宁市| 铅山县| 贵州省| 沙湾县| 平阳县| 中山市| 霍林郭勒市| 德保县| 林西县| 双峰县| 甘肃省| 奇台县| 铜梁县| 托克逊县| 应用必备|