找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Arrays; Theory and Applicati A. S. Hedayat,N. J. A. Sloane,John Stufken Book 1999 Springer-Verlag New York, Inc. 1999 Graph.Orth

[復(fù)制鏈接]
樓主: Cession
21#
發(fā)表于 2025-3-25 06:25:17 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:04 | 只看該作者
978-1-4612-7158-1Springer-Verlag New York, Inc. 1999
23#
發(fā)表于 2025-3-25 14:13:46 | 只看該作者
24#
發(fā)表于 2025-3-25 19:48:38 | 只看該作者
0172-7397 Overview: 978-1-4612-7158-1978-1-4612-1478-6Series ISSN 0172-7397 Series E-ISSN 2197-568X
25#
發(fā)表于 2025-3-25 22:50:24 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:51 | 只看該作者
Introduction,of orthogonal arrays (or OA’s). Since their introduction, many prominent researchers have found a source of inspiration in this fascinating subject. Both statisticians and mathematicians can be credited with significant contributions to this field.
27#
發(fā)表于 2025-3-26 08:21:36 | 只看該作者
28#
發(fā)表于 2025-3-26 10:08:49 | 只看該作者
Statistical Application of Orthogonal Arrays,ve been discovered. We will present the main application in considerable detail, while only giving key references for the other applications. Unless stated otherwise, throughout this chapter the term orthogonal array is to be interpreted as including mixed level arrays.
29#
發(fā)表于 2025-3-26 16:26:08 | 只看該作者
Introduction,atistics. Although Rao (1946a) at first considered only a subclass of these arrangements, the entire class became quickly known by their current name of orthogonal arrays (or OA’s). Since their introduction, many prominent researchers have found a source of inspiration in this fascinating subject. B
30#
發(fā)表于 2025-3-26 19:51:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘洛县| 苍南县| 和静县| 伊宁市| 中方县| 轮台县| 兴国县| 察雅县| 金秀| 北宁市| 淮北市| 莎车县| 丽江市| 西林县| 屯留县| 博罗县| 舒城县| 浪卡子县| 凤冈县| 民县| 康平县| 灵武市| 当雄县| 定襄县| 鄂州市| 和硕县| 井冈山市| 专栏| 依兰县| 江安县| 怀柔区| 桐乡市| 铜陵市| 潜山县| 新乡市| 黑龙江省| 汝南县| 新津县| 延安市| 临潭县| 崇礼县|