找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Arrays; Theory and Applicati A. S. Hedayat,N. J. A. Sloane,John Stufken Book 1999 Springer-Verlag New York, Inc. 1999 Graph.Orth

[復制鏈接]
樓主: Cession
21#
發(fā)表于 2025-3-25 06:25:17 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:04 | 只看該作者
978-1-4612-7158-1Springer-Verlag New York, Inc. 1999
23#
發(fā)表于 2025-3-25 14:13:46 | 只看該作者
24#
發(fā)表于 2025-3-25 19:48:38 | 只看該作者
0172-7397 Overview: 978-1-4612-7158-1978-1-4612-1478-6Series ISSN 0172-7397 Series E-ISSN 2197-568X
25#
發(fā)表于 2025-3-25 22:50:24 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:51 | 只看該作者
Introduction,of orthogonal arrays (or OA’s). Since their introduction, many prominent researchers have found a source of inspiration in this fascinating subject. Both statisticians and mathematicians can be credited with significant contributions to this field.
27#
發(fā)表于 2025-3-26 08:21:36 | 只看該作者
28#
發(fā)表于 2025-3-26 10:08:49 | 只看該作者
Statistical Application of Orthogonal Arrays,ve been discovered. We will present the main application in considerable detail, while only giving key references for the other applications. Unless stated otherwise, throughout this chapter the term orthogonal array is to be interpreted as including mixed level arrays.
29#
發(fā)表于 2025-3-26 16:26:08 | 只看該作者
Introduction,atistics. Although Rao (1946a) at first considered only a subclass of these arrangements, the entire class became quickly known by their current name of orthogonal arrays (or OA’s). Since their introduction, many prominent researchers have found a source of inspiration in this fascinating subject. B
30#
發(fā)表于 2025-3-26 19:51:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
日照市| 华阴市| 沂南县| 慈溪市| 三门县| 龙南县| 嘉善县| 临沭县| 桐庐县| 东莞市| 阳朔县| 天台县| 盘锦市| 桐城市| 体育| 汉源县| 仙游县| 嘉义县| 乡宁县| 棋牌| 南岸区| 徐汇区| 宾川县| 嘉善县| 上思县| 应用必备| 信宜市| 英吉沙县| 南漳县| 东兰县| 安岳县| 崇左市| 老河口市| 马公市| 南召县| 张家港市| 科技| 盐津县| 嘉禾县| 新乡县| 望江县|