找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Arrays; Theory and Applicati A. S. Hedayat,N. J. A. Sloane,John Stufken Book 1999 Springer-Verlag New York, Inc. 1999 Graph.Orth

[復制鏈接]
樓主: Cession
21#
發(fā)表于 2025-3-25 06:25:17 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:04 | 只看該作者
978-1-4612-7158-1Springer-Verlag New York, Inc. 1999
23#
發(fā)表于 2025-3-25 14:13:46 | 只看該作者
24#
發(fā)表于 2025-3-25 19:48:38 | 只看該作者
0172-7397 Overview: 978-1-4612-7158-1978-1-4612-1478-6Series ISSN 0172-7397 Series E-ISSN 2197-568X
25#
發(fā)表于 2025-3-25 22:50:24 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:51 | 只看該作者
Introduction,of orthogonal arrays (or OA’s). Since their introduction, many prominent researchers have found a source of inspiration in this fascinating subject. Both statisticians and mathematicians can be credited with significant contributions to this field.
27#
發(fā)表于 2025-3-26 08:21:36 | 只看該作者
28#
發(fā)表于 2025-3-26 10:08:49 | 只看該作者
Statistical Application of Orthogonal Arrays,ve been discovered. We will present the main application in considerable detail, while only giving key references for the other applications. Unless stated otherwise, throughout this chapter the term orthogonal array is to be interpreted as including mixed level arrays.
29#
發(fā)表于 2025-3-26 16:26:08 | 只看該作者
Introduction,atistics. Although Rao (1946a) at first considered only a subclass of these arrangements, the entire class became quickly known by their current name of orthogonal arrays (or OA’s). Since their introduction, many prominent researchers have found a source of inspiration in this fascinating subject. B
30#
發(fā)表于 2025-3-26 19:51:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南丰县| 高雄县| 晋州市| 廉江市| 东山县| 墨玉县| 水富县| 唐海县| 重庆市| 双柏县| 崇明县| 社会| 海林市| 合山市| 同仁县| 乃东县| 密山市| 清新县| 伊宁市| 涞水县| 古田县| 涪陵区| 喀什市| 隆子县| 栾城县| 太原市| 荔浦县| 盐津县| 宜君县| 巩留县| 榆社县| 商水县| 博白县| 新乡市| 呈贡县| 开平市| 西华县| 鄂托克旗| 虎林市| 武义县| 农安县|