找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control; Calculus of Variatio R. Bulirsch,A. Miele,K. Well Book 1993 Springer Basel AG 1993 Calculus of Variations.Eigenvalue.Evolu

[復(fù)制鏈接]
樓主: ergonomics
21#
發(fā)表于 2025-3-25 04:58:41 | 只看該作者
22#
發(fā)表于 2025-3-25 07:32:10 | 只看該作者
23#
發(fā)表于 2025-3-25 13:07:07 | 只看該作者
24#
發(fā)表于 2025-3-25 15:59:16 | 只看該作者
25#
發(fā)表于 2025-3-25 20:47:14 | 只看該作者
Semidiscrete Ritz-Galerkin Approximation of Nonlinear Parabolic Boundary Control Problemste is considered. Related to this problem a corresponding approximate one is defined, where the equation of state is tackled by a semidiscrete Ritz- Galerkin method and the set of admissible controls is discretized. It is shown that the optimal controls of the approximate problems converge strongly
26#
發(fā)表于 2025-3-26 01:26:20 | 只看該作者
27#
發(fā)表于 2025-3-26 05:40:22 | 只看該作者
28#
發(fā)表于 2025-3-26 11:51:28 | 只看該作者
Reduced SQP Methods for Nonlinear Heat Conduction Control Problemshe discretized form of such a problem and apply a reduced SQP method for the numerical solution of the optimization problem. This method makes use of the sparsity and offers the advantage to approximate second order information by a quasi Newton update which is practicable with regard to storage. Th
29#
發(fā)表于 2025-3-26 15:07:44 | 只看該作者
30#
發(fā)表于 2025-3-26 18:03:10 | 只看該作者
A Discrete Stabilizing Study Strategy for a Student Related Problem under Uncertaintynimum expenditure of effort Later on, Bondi (1982), Parlar (1984), Cheng and Teo (1987) as well as Lee and Leitmann (1990) discussed, modified and extended the problem. Lee and Leitmann (1991) also considered a related problem in which the system parameters are uncertain but bounded, and the results
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉新县| 阳高县| 繁昌县| 枣强县| 广东省| 土默特右旗| 福鼎市| 保山市| 称多县| 湄潭县| 承德市| 呼和浩特市| 瑞安市| 平遥县| 建瓯市| 绿春县| 宁国市| 涿州市| 南阳市| 墨竹工卡县| 昭苏县| 盈江县| 荥阳市| 肃宁县| 鹤壁市| 阳江市| 章丘市| 凭祥市| 濮阳市| 南陵县| 永平县| 甘洛县| 乐至县| 咸宁市| 赣榆县| 财经| 福建省| 榕江县| 大悟县| 璧山县| 兖州市|