找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On the Higher-Order Sheffer Orthogonal Polynomial Sequences; Daniel J. Galiffa Book 2013 Daniel J. Galiffa 2013 B-Type 1.Mathematica.Ortho

[復(fù)制鏈接]
查看: 23567|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:15:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences
編輯Daniel J. Galiffa
視頻videohttp://file.papertrans.cn/702/701172/701172.mp4
概述Addresses preliminary insights regarding the characterization of Orthogonal Polynomial Sequences.Gives a concise and informative overview of the development of the B- Type 0 Orthogonal Polynomail Sequ
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: On the Higher-Order Sheffer Orthogonal Polynomial Sequences;  Daniel J. Galiffa Book 2013 Daniel J. Galiffa 2013 B-Type 1.Mathematica.Ortho
描述On the Higher-Order Sheffer Orthogonal Polynomial Sequences sheds light on the existence/non-existence of B-Type 1 orthogonal polynomials. This book presents a template for analyzing potential orthogonal polynomial sequences including additional higher-order Sheffer classes. This text not only shows that there are no OPS for thespecial case the B-Type 1 class, but that there are no orthogonal polynomial sequences for the general B-Type 1 class as well. Moreover, it is quite provocative how the seemingly subtle transition from the B-Type 0 class to the B-Type 1 class leads to a drastically more difficult characterization problem. Despite this issue, a procedure is established that yields a definite answer to our current characterization problem, which can also be extended to various other characterization problems as well.Accessible to undergraduate students in the mathematical sciences and related fields, This book functions as an important reference work regarding the Sheffer sequences. The author takes advantage of Mathematica 7 to display unique detailed code and increase the reader‘s understanding of the implementation of Mathematica 7 and facilitate further experimentation. In
出版日期Book 2013
關(guān)鍵詞B-Type 1; Mathematica; Orthogonal Polynomials; Recurrence Relations; Recursion Coefficients; Sheffer Sequ
版次1
doihttps://doi.org/10.1007/978-1-4614-5969-9
isbn_softcover978-1-4614-5968-2
isbn_ebook978-1-4614-5969-9Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightDaniel J. Galiffa 2013
The information of publication is updating

書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences影響因子(影響力)




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences影響因子(影響力)學(xué)科排名




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences網(wǎng)絡(luò)公開度




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences被引頻次




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences被引頻次學(xué)科排名




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences年度引用




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences年度引用學(xué)科排名




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences讀者反饋




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:02 | 只看該作者
2191-8198 r sequences. The author takes advantage of Mathematica 7 to display unique detailed code and increase the reader‘s understanding of the implementation of Mathematica 7 and facilitate further experimentation. In978-1-4614-5968-2978-1-4614-5969-9Series ISSN 2191-8198 Series E-ISSN 2191-8201
板凳
發(fā)表于 2025-3-22 00:37:19 | 只看該作者
地板
發(fā)表于 2025-3-22 07:48:02 | 只看該作者
5#
發(fā)表于 2025-3-22 12:04:20 | 只看該作者
6#
發(fā)表于 2025-3-22 14:18:08 | 只看該作者
7#
發(fā)表于 2025-3-22 17:35:53 | 只看該作者
8#
發(fā)表于 2025-3-22 21:49:14 | 只看該作者
9#
發(fā)表于 2025-3-23 02:31:30 | 只看該作者
https://doi.org/10.1007/978-1-4614-5969-9B-Type 1; Mathematica; Orthogonal Polynomials; Recurrence Relations; Recursion Coefficients; Sheffer Sequ
10#
發(fā)表于 2025-3-23 07:40:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
库车县| 泸西县| 肥城市| 南通市| 宾川县| 昭觉县| 南丰县| 肃南| 武城县| 汤阴县| 松阳县| 芷江| 荆门市| 澄城县| 射阳县| 宁波市| 彭水| 长岛县| 万年县| 温宿县| 贵港市| 繁昌县| 民乐县| 翁牛特旗| 丹凤县| 台南县| 万全县| 岑巩县| 类乌齐县| 翁源县| 涟水县| 黄大仙区| 昭通市| 宣汉县| 惠来县| 齐齐哈尔市| 贵溪市| 武城县| 黄大仙区| 呼玛县| 黔江区|