找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On the Higher-Order Sheffer Orthogonal Polynomial Sequences; Daniel J. Galiffa Book 2013 Daniel J. Galiffa 2013 B-Type 1.Mathematica.Ortho

[復制鏈接]
樓主: chondrocyte
11#
發(fā)表于 2025-3-23 11:39:15 | 只看該作者
Some Applications of the Sheffer A-Type 0 Orthogonal Polynomial Sequences,ns (with applications to quantum mechanics), difference equations and numerical integration (Gaussian Quadrature). We first develop each of these applications in a general context and then cover examples using specific Sheffer Sequences, i.e. the Laguerre, Hermite, Charlier, Meixner, Meixner–Pollaczek, and Krawtchouk polynomials.
12#
發(fā)表于 2025-3-23 16:15:44 | 只看該作者
2191-8198 the development of the B- Type 0 Orthogonal Polynomail SequOn the Higher-Order Sheffer Orthogonal Polynomial Sequences sheds light on the existence/non-existence of B-Type 1 orthogonal polynomials. This book presents a template for analyzing potential orthogonal polynomial sequences including addit
13#
發(fā)表于 2025-3-23 22:02:21 | 只看該作者
The Sheffer A-Type 0 Orthogonal Polynomial Sequences and Related Results,lem studied by Sheffer and then discuss an extension of Meixner’s analysis by W.A. Al-Salam. Portions of the analysis addressed throughout this chapter are supplemented with informative concrete examples.
14#
發(fā)表于 2025-3-23 22:33:18 | 只看該作者
The Sheffer A-Type 0 Orthogonal Polynomial Sequences and Related Results,results that led to the main theorem that characterizes the general . polynomial sequences via a linear generating function. From there, we develop the additional theory that Sheffer utilized in order to determine which . polynomial sequences are also orthogonal. We then address Sheffer’s additional
15#
發(fā)表于 2025-3-24 05:07:53 | 只看該作者
Some Applications of the Sheffer A-Type 0 Orthogonal Polynomial Sequences,differential equations that characterize linear generating functions, additional first-order differential equations, second-order differential equations (with applications to quantum mechanics), difference equations and numerical integration (Gaussian Quadrature). We first develop each of these appl
16#
發(fā)表于 2025-3-24 10:24:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:14:23 | 只看該作者
Ario de Marcoh GIE) using uniform methodology and terminology with a prac.The book proposes a uniform logic and probabilistic (LP) approach to risk estimation and analysis in engineering and economics. It covers the methodological and theoretical basis of risk management at the design, test, and operation stages
18#
發(fā)表于 2025-3-24 15:12:00 | 只看該作者
Victor H. De La Pe?a computing power and easy availability of computers have generated tremendous interest in the design and imp- mentation of Complex Systems. Computer-based solutions offer great support in the design of Complex Systems. Furthermore, Complex Systems are becoming incre- ingly complex themselves. This r
19#
發(fā)表于 2025-3-24 21:28:56 | 只看該作者
20#
發(fā)表于 2025-3-25 03:04:47 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 23:37
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
凯里市| 星子县| 绥阳县| 四川省| 名山县| 高密市| 唐河县| 长沙县| 兴业县| 麻城市| 康乐县| 集安市| 宁都县| 友谊县| 乐平市| 耒阳市| 区。| 垦利县| 宁乡县| 慈溪市| 南皮县| 黑水县| 凤翔县| 栖霞市| 隆昌县| 大城县| 驻马店市| 调兵山市| 苍溪县| 剑河县| 包头市| 高要市| 怀柔区| 新巴尔虎右旗| 棋牌| 高青县| 曲松县| 鄂伦春自治旗| 房产| 项城市| 长武县|